I have this image of a statue.
I'm trying to find the top, bottom, left, and right most points on the statue. Is there a way to measure the edge of each side to determine the outer most point on the statue? I want to get the (x,y)
coordinate of each side. I have tried to use cv2.findContours()
and cv2.drawContours()
to get an outline of the statue.
import cv2
img = cv2.imread('statue.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(img, contours, -1, (0, 200, 0), 3)
cv2.imshow('img', img)
cv2.waitKey()
The process of approximating the shape of a contour of a given polygon to the shape of the original polygon to the specified precision is called approximation of a shape of the contour. We make use of a function in OpenCV called approxPolyDP() function to perform an approximation of a shape of a contour.
goodFeaturesToTrack() method finds N strongest corners in the image by Shi-Tomasi method. Note that the image should be a grayscale image. Specify the number of corners you want to find and the quality level (which is a value between 0-1). It denotes the minimum quality of corner below which everyone is rejected.
Here's a potential approach:
Convert image to grayscale and Gaussian blur
Threshold to obtain a binary image
Find contours
Obtain outer coordinates
After converting to grayscale and blurring image, we threshold to get a binary image
Now we find contours using cv2.findContours()
. Since OpenCV uses Numpy arrays to encode images, a contour is simply a Numpy array of (x,y)
coordinates. We can slice the Numpy array and use argmin()
or argmax()
to determine the outer left, right, top, and bottom coordinates like this
left = tuple(c[c[:, :, 0].argmin()][0])
right = tuple(c[c[:, :, 0].argmax()][0])
top = tuple(c[c[:, :, 1].argmin()][0])
bottom = tuple(c[c[:, :, 1].argmax()][0])
Here's the result
left: (162, 527)
right: (463, 467)
top: (250, 8)
bottom: (381, 580)
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 220, 255, cv2.THRESH_BINARY_INV)[1]
# Find contours
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
c = max(cnts, key=cv2.contourArea)
# Obtain outer coordinates
left = tuple(c[c[:, :, 0].argmin()][0])
right = tuple(c[c[:, :, 0].argmax()][0])
top = tuple(c[c[:, :, 1].argmin()][0])
bottom = tuple(c[c[:, :, 1].argmax()][0])
# Draw dots onto image
cv2.drawContours(image, [c], -1, (36, 255, 12), 2)
cv2.circle(image, left, 8, (0, 50, 255), -1)
cv2.circle(image, right, 8, (0, 255, 255), -1)
cv2.circle(image, top, 8, (255, 50, 0), -1)
cv2.circle(image, bottom, 8, (255, 255, 0), -1)
print('left: {}'.format(left))
print('right: {}'.format(right))
print('top: {}'.format(top))
print('bottom: {}'.format(bottom))
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With