But since it has the upper hand in the average cases for most inputs, Quicksort is generally considered the “fastest” sorting algorithm.
For large number of data sets, Insertion sort is the fastest. In the practical sorting, this case occurs rarely. Note that randomized Quicksort makes worst cases less possible, which will be the case for in-order data if the pivot point in Quicksort is chosen as the first element.
Insertion sort or selection sort are both typically faster for small arrays (i.e., fewer than 10-20 elements). A useful optimization in practice for the recursive algorithms is to switch to insertion sort or selection sort for "small enough" subarrays. Merge sort is an O(n log n) comparison-based sorting algorithm.
When the array is almost sorted, insertion sort can be preferred. When order of input is not known, merge sort is preferred as it has worst case time complexity of nlogn and it is stable as well. When the array is sorted, insertion and bubble sort gives complexity of n but quick sort gives complexity of n^2.
For any optimization, it's always best to test, test, test. I would try at least sorting networks and insertion sort. If I were betting, I'd put my money on insertion sort based on past experience.
Do you know anything about the input data? Some algorithms will perform better with certain kinds of data. For example, insertion sort performs better on sorted or almost-sorted dat, so it will be the better choice if there's an above-average chance of almost-sorted data.
The algorithm you posted is similar to an insertion sort, but it looks like you've minimized the number of swaps at the cost of more comparisons. Comparisons are far more expensive than swaps, though, because branches can cause the instruction pipeline to stall.
Here's an insertion sort implementation:
static __inline__ int sort6(int *d){
int i, j;
for (i = 1; i < 6; i++) {
int tmp = d[i];
for (j = i; j >= 1 && tmp < d[j-1]; j--)
d[j] = d[j-1];
d[j] = tmp;
}
}
Here's how I'd build a sorting network. First, use this site to generate a minimal set of SWAP macros for a network of the appropriate length. Wrapping that up in a function gives me:
static __inline__ int sort6(int * d){
#define SWAP(x,y) if (d[y] < d[x]) { int tmp = d[x]; d[x] = d[y]; d[y] = tmp; }
SWAP(1, 2);
SWAP(0, 2);
SWAP(0, 1);
SWAP(4, 5);
SWAP(3, 5);
SWAP(3, 4);
SWAP(0, 3);
SWAP(1, 4);
SWAP(2, 5);
SWAP(2, 4);
SWAP(1, 3);
SWAP(2, 3);
#undef SWAP
}
Here's an implementation using sorting networks:
inline void Sort2(int *p0, int *p1)
{
const int temp = min(*p0, *p1);
*p1 = max(*p0, *p1);
*p0 = temp;
}
inline void Sort3(int *p0, int *p1, int *p2)
{
Sort2(p0, p1);
Sort2(p1, p2);
Sort2(p0, p1);
}
inline void Sort4(int *p0, int *p1, int *p2, int *p3)
{
Sort2(p0, p1);
Sort2(p2, p3);
Sort2(p0, p2);
Sort2(p1, p3);
Sort2(p1, p2);
}
inline void Sort6(int *p0, int *p1, int *p2, int *p3, int *p4, int *p5)
{
Sort3(p0, p1, p2);
Sort3(p3, p4, p5);
Sort2(p0, p3);
Sort2(p2, p5);
Sort4(p1, p2, p3, p4);
}
You really need very efficient branchless min
and max
implementations for this, since that is effectively what this code boils down to - a sequence of min
and max
operations (13 of each, in total). I leave this as an exercise for the reader.
Note that this implementation lends itself easily to vectorization (e.g. SIMD - most SIMD ISAs have vector min/max instructions) and also to GPU implementations (e.g. CUDA - being branchless there are no problems with warp divergence etc).
See also: Fast algorithm implementation to sort very small list
Since these are integers and compares are fast, why not compute the rank order of each directly:
inline void sort6(int *d) {
int e[6];
memcpy(e,d,6*sizeof(int));
int o0 = (d[0]>d[1])+(d[0]>d[2])+(d[0]>d[3])+(d[0]>d[4])+(d[0]>d[5]);
int o1 = (d[1]>=d[0])+(d[1]>d[2])+(d[1]>d[3])+(d[1]>d[4])+(d[1]>d[5]);
int o2 = (d[2]>=d[0])+(d[2]>=d[1])+(d[2]>d[3])+(d[2]>d[4])+(d[2]>d[5]);
int o3 = (d[3]>=d[0])+(d[3]>=d[1])+(d[3]>=d[2])+(d[3]>d[4])+(d[3]>d[5]);
int o4 = (d[4]>=d[0])+(d[4]>=d[1])+(d[4]>=d[2])+(d[4]>=d[3])+(d[4]>d[5]);
int o5 = 15-(o0+o1+o2+o3+o4);
d[o0]=e[0]; d[o1]=e[1]; d[o2]=e[2]; d[o3]=e[3]; d[o4]=e[4]; d[o5]=e[5];
}
Looks like I got to the party a year late, but here we go...
Looking at the assembly generated by gcc 4.5.2 I observed that loads and stores are being done for every swap, which really isn't needed. It would be better to load the 6 values into registers, sort those, and store them back into memory. I ordered the loads at stores to be as close as possible to there the registers are first needed and last used. I also used Steinar H. Gunderson's SWAP macro. Update: I switched to Paolo Bonzini's SWAP macro which gcc converts into something similar to Gunderson's, but gcc is able to better order the instructions since they aren't given as explicit assembly.
I used the same swap order as the reordered swap network given as the best performing, although there may be a better ordering. If I find some more time I'll generate and test a bunch of permutations.
I changed the testing code to consider over 4000 arrays and show the average number of cycles needed to sort each one. On an i5-650 I'm getting ~34.1 cycles/sort (using -O3), compared to the original reordered sorting network getting ~65.3 cycles/sort (using -O1, beats -O2 and -O3).
#include <stdio.h>
static inline void sort6_fast(int * d) {
#define SWAP(x,y) { int dx = x, dy = y, tmp; tmp = x = dx < dy ? dx : dy; y ^= dx ^ tmp; }
register int x0,x1,x2,x3,x4,x5;
x1 = d[1];
x2 = d[2];
SWAP(x1, x2);
x4 = d[4];
x5 = d[5];
SWAP(x4, x5);
x0 = d[0];
SWAP(x0, x2);
x3 = d[3];
SWAP(x3, x5);
SWAP(x0, x1);
SWAP(x3, x4);
SWAP(x1, x4);
SWAP(x0, x3);
d[0] = x0;
SWAP(x2, x5);
d[5] = x5;
SWAP(x1, x3);
d[1] = x1;
SWAP(x2, x4);
d[4] = x4;
SWAP(x2, x3);
d[2] = x2;
d[3] = x3;
#undef SWAP
#undef min
#undef max
}
static __inline__ unsigned long long rdtsc(void)
{
unsigned long long int x;
__asm__ volatile ("rdtsc; shlq $32, %%rdx; orq %%rdx, %0" : "=a" (x) : : "rdx");
return x;
}
void ran_fill(int n, int *a) {
static int seed = 76521;
while (n--) *a++ = (seed = seed *1812433253 + 12345);
}
#define NTESTS 4096
int main() {
int i;
int d[6*NTESTS];
ran_fill(6*NTESTS, d);
unsigned long long cycles = rdtsc();
for (i = 0; i < 6*NTESTS ; i+=6) {
sort6_fast(d+i);
}
cycles = rdtsc() - cycles;
printf("Time is %.2lf\n", (double)cycles/(double)NTESTS);
for (i = 0; i < 6*NTESTS ; i+=6) {
if (d[i+0] > d[i+1] || d[i+1] > d[i+2] || d[i+2] > d[i+3] || d[i+3] > d[i+4] || d[i+4] > d[i+5])
printf("d%d : %d %d %d %d %d %d\n", i,
d[i+0], d[i+1], d[i+2],
d[i+3], d[i+4], d[i+5]);
}
return 0;
}
I changed modified the test suite to also report clocks per sort and run more tests (the cmp function was updated to handle integer overflow as well), here are the results on some different architectures. I attempted testing on an AMD cpu but rdtsc isn't reliable on the X6 1100T I have available.
Clarkdale (i5-650)
==================
Direct call to qsort library function 635.14 575.65 581.61 577.76 521.12
Naive implementation (insertion sort) 538.30 135.36 134.89 240.62 101.23
Insertion Sort (Daniel Stutzbach) 424.48 159.85 160.76 152.01 151.92
Insertion Sort Unrolled 339.16 125.16 125.81 129.93 123.16
Rank Order 184.34 106.58 54.74 93.24 94.09
Rank Order with registers 127.45 104.65 53.79 98.05 97.95
Sorting Networks (Daniel Stutzbach) 269.77 130.56 128.15 126.70 127.30
Sorting Networks (Paul R) 551.64 103.20 64.57 73.68 73.51
Sorting Networks 12 with Fast Swap 321.74 61.61 63.90 67.92 67.76
Sorting Networks 12 reordered Swap 318.75 60.69 65.90 70.25 70.06
Reordered Sorting Network w/ fast swap 145.91 34.17 32.66 32.22 32.18
Kentsfield (Core 2 Quad)
========================
Direct call to qsort library function 870.01 736.39 723.39 725.48 721.85
Naive implementation (insertion sort) 503.67 174.09 182.13 284.41 191.10
Insertion Sort (Daniel Stutzbach) 345.32 152.84 157.67 151.23 150.96
Insertion Sort Unrolled 316.20 133.03 129.86 118.96 105.06
Rank Order 164.37 138.32 46.29 99.87 99.81
Rank Order with registers 115.44 116.02 44.04 116.04 116.03
Sorting Networks (Daniel Stutzbach) 230.35 114.31 119.15 110.51 111.45
Sorting Networks (Paul R) 498.94 77.24 63.98 62.17 65.67
Sorting Networks 12 with Fast Swap 315.98 59.41 58.36 60.29 55.15
Sorting Networks 12 reordered Swap 307.67 55.78 51.48 51.67 50.74
Reordered Sorting Network w/ fast swap 149.68 31.46 30.91 31.54 31.58
Sandy Bridge (i7-2600k)
=======================
Direct call to qsort library function 559.97 451.88 464.84 491.35 458.11
Naive implementation (insertion sort) 341.15 160.26 160.45 154.40 106.54
Insertion Sort (Daniel Stutzbach) 284.17 136.74 132.69 123.85 121.77
Insertion Sort Unrolled 239.40 110.49 114.81 110.79 117.30
Rank Order 114.24 76.42 45.31 36.96 36.73
Rank Order with registers 105.09 32.31 48.54 32.51 33.29
Sorting Networks (Daniel Stutzbach) 210.56 115.68 116.69 107.05 124.08
Sorting Networks (Paul R) 364.03 66.02 61.64 45.70 44.19
Sorting Networks 12 with Fast Swap 246.97 41.36 59.03 41.66 38.98
Sorting Networks 12 reordered Swap 235.39 38.84 47.36 38.61 37.29
Reordered Sorting Network w/ fast swap 115.58 27.23 27.75 27.25 26.54
Nehalem (Xeon E5640)
====================
Direct call to qsort library function 911.62 890.88 681.80 876.03 872.89
Naive implementation (insertion sort) 457.69 236.87 127.68 388.74 175.28
Insertion Sort (Daniel Stutzbach) 317.89 279.74 147.78 247.97 245.09
Insertion Sort Unrolled 259.63 220.60 116.55 221.66 212.93
Rank Order 140.62 197.04 52.10 163.66 153.63
Rank Order with registers 84.83 96.78 50.93 109.96 54.73
Sorting Networks (Daniel Stutzbach) 214.59 220.94 118.68 120.60 116.09
Sorting Networks (Paul R) 459.17 163.76 56.40 61.83 58.69
Sorting Networks 12 with Fast Swap 284.58 95.01 50.66 53.19 55.47
Sorting Networks 12 reordered Swap 281.20 96.72 44.15 56.38 54.57
Reordered Sorting Network w/ fast swap 128.34 50.87 26.87 27.91 28.02
The test code is pretty bad; it overflows the initial array (don't people here read compiler warnings?), the printf is printing out the wrong elements, it uses .byte for rdtsc for no good reason, there's only one run (!), there's nothing checking that the end results are actually correct (so it's very easy to “optimize” into something subtly wrong), the included tests are very rudimentary (no negative numbers?) and there's nothing to stop the compiler from just discarding the entire function as dead code.
That being said, it's also pretty easy to improve on the bitonic network solution; simply change the min/max/SWAP stuff to
#define SWAP(x,y) { int tmp; asm("mov %0, %2 ; cmp %1, %0 ; cmovg %1, %0 ; cmovg %2, %1" : "=r" (d[x]), "=r" (d[y]), "=r" (tmp) : "0" (d[x]), "1" (d[y]) : "cc"); }
and it comes out about 65% faster for me (Debian gcc 4.4.5 with -O2, amd64, Core i7).
I stumbled onto this question from Google a few days ago because I also had a need to quickly sort a fixed length array of 6 integers. In my case however, my integers are only 8 bits (instead of 32) and I do not have a strict requirement of only using C. I thought I would share my findings anyways, in case they might be helpful to someone...
I implemented a variant of a network sort in assembly that uses SSE to vectorize the compare and swap operations, to the extent possible. It takes six "passes" to completely sort the array. I used a novel mechanism to directly convert the results of PCMPGTB (vectorized compare) to shuffle parameters for PSHUFB (vectorized swap), using only a PADDB (vectorized add) and in some cases also a PAND (bitwise AND) instruction.
This approach also had the side effect of yielding a truly branchless function. There are no jump instructions whatsoever.
It appears that this implementation is about 38% faster than the implementation which is currently marked as the fastest option in the question ("Sorting Networks 12 with Simple Swap"). I modified that implementation to use char
array elements during my testing, to make the comparison fair.
I should note that this approach can be applied to any array size up to 16 elements. I expect the relative speed advantage over the alternatives to grow larger for the bigger arrays.
The code is written in MASM for x86_64 processors with SSSE3. The function uses the "new" Windows x64 calling convention. Here it is...
PUBLIC simd_sort_6
.DATA
ALIGN 16
pass1_shuffle OWORD 0F0E0D0C0B0A09080706040503010200h
pass1_add OWORD 0F0E0D0C0B0A09080706050503020200h
pass2_shuffle OWORD 0F0E0D0C0B0A09080706030405000102h
pass2_and OWORD 00000000000000000000FE00FEFE00FEh
pass2_add OWORD 0F0E0D0C0B0A09080706050405020102h
pass3_shuffle OWORD 0F0E0D0C0B0A09080706020304050001h
pass3_and OWORD 00000000000000000000FDFFFFFDFFFFh
pass3_add OWORD 0F0E0D0C0B0A09080706050404050101h
pass4_shuffle OWORD 0F0E0D0C0B0A09080706050100020403h
pass4_and OWORD 0000000000000000000000FDFD00FDFDh
pass4_add OWORD 0F0E0D0C0B0A09080706050403020403h
pass5_shuffle OWORD 0F0E0D0C0B0A09080706050201040300h
pass5_and OWORD 0000000000000000000000FEFEFEFE00h
pass5_add OWORD 0F0E0D0C0B0A09080706050403040300h
pass6_shuffle OWORD 0F0E0D0C0B0A09080706050402030100h
pass6_add OWORD 0F0E0D0C0B0A09080706050403030100h
.CODE
simd_sort_6 PROC FRAME
.endprolog
; pxor xmm4, xmm4
; pinsrd xmm4, dword ptr [rcx], 0
; pinsrb xmm4, byte ptr [rcx + 4], 4
; pinsrb xmm4, byte ptr [rcx + 5], 5
; The benchmarked 38% faster mentioned in the text was with the above slower sequence that tied up the shuffle port longer. Same on extract
; avoiding pins/extrb also means we don't need SSE 4.1, but SSSE3 CPUs without SSE4.1 (e.g. Conroe/Merom) have slow pshufb.
movd xmm4, dword ptr [rcx]
pinsrw xmm4, word ptr [rcx + 4], 2 ; word 2 = bytes 4 and 5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass1_shuffle]
pcmpgtb xmm5, xmm4
paddb xmm5, oword ptr [pass1_add]
pshufb xmm4, xmm5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass2_shuffle]
pcmpgtb xmm5, xmm4
pand xmm5, oword ptr [pass2_and]
paddb xmm5, oword ptr [pass2_add]
pshufb xmm4, xmm5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass3_shuffle]
pcmpgtb xmm5, xmm4
pand xmm5, oword ptr [pass3_and]
paddb xmm5, oword ptr [pass3_add]
pshufb xmm4, xmm5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass4_shuffle]
pcmpgtb xmm5, xmm4
pand xmm5, oword ptr [pass4_and]
paddb xmm5, oword ptr [pass4_add]
pshufb xmm4, xmm5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass5_shuffle]
pcmpgtb xmm5, xmm4
pand xmm5, oword ptr [pass5_and]
paddb xmm5, oword ptr [pass5_add]
pshufb xmm4, xmm5
movdqa xmm5, xmm4
pshufb xmm5, oword ptr [pass6_shuffle]
pcmpgtb xmm5, xmm4
paddb xmm5, oword ptr [pass6_add]
pshufb xmm4, xmm5
;pextrd dword ptr [rcx], xmm4, 0 ; benchmarked with this
;pextrb byte ptr [rcx + 4], xmm4, 4 ; slower version
;pextrb byte ptr [rcx + 5], xmm4, 5
movd dword ptr [rcx], xmm4
pextrw word ptr [rcx + 4], xmm4, 2 ; x86 is little-endian, so this is the right order
ret
simd_sort_6 ENDP
END
You can compile this to an executable object and link it into your C project. For instructions on how to do this in Visual Studio, you can read this article. You can use the following C prototype to call the function from your C code:
void simd_sort_6(char *values);
While I really like the swap macro provided:
#define min(x, y) (y ^ ((x ^ y) & -(x < y)))
#define max(x, y) (x ^ ((x ^ y) & -(x < y)))
#define SWAP(x,y) { int tmp = min(d[x], d[y]); d[y] = max(d[x], d[y]); d[x] = tmp; }
I see an improvement (which a good compiler might make):
#define SWAP(x,y) { int tmp = ((x ^ y) & -(y < x)); y ^= tmp; x ^= tmp; }
We take note of how min and max work and pull the common sub-expression explicitly. This eliminates the min and max macros completely.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With