Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Difference between Big-O and Little-O Notation

What is the difference between Big-O notation O(n) and Little-O notation o(n)?

like image 696
Jeffrey Lott Avatar asked Sep 01 '09 20:09

Jeffrey Lott


People also ask

What is the difference between Big O notation and Little o notation?

In short, they are both asymptotic notations that specify upper-bounds for functions and running times of algorithms. However, the difference is that big-O may be asymptotically tight while little-o makes sure that the upper bound isn't asymptotically tight.

What is little o notation used for?

Little o notation is used to describe an upper bound that cannot be tight. In other words, loose upper bound of f(n). Let f(n) and g(n) are the functions that map positive real numbers.

Is Big-O or little O better?

These both describe upper bounds, although somewhat counter-intuitively, Little-o is the stronger statement. There is a much larger gap between the growth rates of f and g if f ∈ o(g) than if f ∈ O(g).

What is the difference between Big-O and Big Omega?

The difference between Big O notation and Big Ω notation is that Big O is used to describe the worst case running time for an algorithm. But, Big Ω notation, on the other hand, is used to describe the best case running time for a given algorithm.


1 Answers

f ∈ O(g) says, essentially

For at least one choice of a constant k > 0, you can find a constant a such that the inequality 0 <= f(x) <= k g(x) holds for all x > a.

Note that O(g) is the set of all functions for which this condition holds.

f ∈ o(g) says, essentially

For every choice of a constant k > 0, you can find a constant a such that the inequality 0 <= f(x) < k g(x) holds for all x > a.

Once again, note that o(g) is a set.

In Big-O, it is only necessary that you find a particular multiplier k for which the inequality holds beyond some minimum x.

In Little-o, it must be that there is a minimum x after which the inequality holds no matter how small you make k, as long as it is not negative or zero.

These both describe upper bounds, although somewhat counter-intuitively, Little-o is the stronger statement. There is a much larger gap between the growth rates of f and g if f ∈ o(g) than if f ∈ O(g).

One illustration of the disparity is this: f ∈ O(f) is true, but f ∈ o(f) is false. Therefore, Big-O can be read as "f ∈ O(g) means that f's asymptotic growth is no faster than g's", whereas "f ∈ o(g) means that f's asymptotic growth is strictly slower than g's". It's like <= versus <.

More specifically, if the value of g(x) is a constant multiple of the value of f(x), then f ∈ O(g) is true. This is why you can drop constants when working with big-O notation.

However, for f ∈ o(g) to be true, then g must include a higher power of x in its formula, and so the relative separation between f(x) and g(x) must actually get larger as x gets larger.

To use purely math examples (rather than referring to algorithms):

The following are true for Big-O, but would not be true if you used little-o:

  • x² ∈ O(x²)
  • x² ∈ O(x² + x)
  • x² ∈ O(200 * x²)

The following are true for little-o:

  • x² ∈ o(x³)
  • x² ∈ o(x!)
  • ln(x) ∈ o(x)

Note that if f ∈ o(g), this implies f ∈ O(g). e.g. x² ∈ o(x³) so it is also true that x² ∈ O(x³), (again, think of O as <= and o as <)

like image 196
Tyler McHenry Avatar answered Oct 25 '22 09:10

Tyler McHenry