I am trying to obtain counts of each combination of levels of two variables, "week" and "id". I'd like the result to have "id" as rows, and "week" as columns, and the counts as the values.
Example of what I've tried so far (tried a bunch of other things, including adding a dummy variable = 1 and then fun.aggregate = sum
over that):
library(plyr)
ddply(data, .(id), dcast, id ~ week, value_var = "id",
fun.aggregate = length, fill = 0, .parallel = TRUE)
However, I must be doing something wrong because this function is not finishing. Is there a better way to do this?
Input:
id week
1 1
1 2
1 3
1 1
2 3
Output:
1 2 3
1 2 1 1
2 0 0 1
You could just use the table
command:
table(data$id,data$week)
1 2 3
1 2 1 1
2 0 0 1
If "id" and "week" are the only columns in your data frame, you can simply use:
table(data)
# week
# id 1 2 3
# 1 2 1 1
# 2 0 0 1
You don't need ddply
for this. The dcast
from reshape2
is sufficient:
dat <- data.frame(
id = c(rep(1, 4), 2),
week = c(1:3, 1, 3)
)
library(reshape2)
dcast(dat, id~week, fun.aggregate=length)
id 1 2 3
1 1 2 1 1
2 2 0 0 1
Edit : For a base R solution (other than table
- as posted by Joshua Uhlrich), try xtabs
:
xtabs(~id+week, data=dat)
week
id 1 2 3
1 2 1 1
2 0 0 1
The reason ddply
is taking so long is that the splitting by group is not run in parallel (only the computations on the 'splits'), therefore with a large number of groups it will be slow (and .parallel = T
) will not help.
An approach using data.table::dcast
(data.table
version >= 1.9.2) should be extremely efficient in time and memory. In this case, we can rely on default argument values and simply use:
library(data.table)
dcast(setDT(data), id ~ week)
# Using 'week' as value column. Use 'value.var' to override
# Aggregate function missing, defaulting to 'length'
# id 1 2 3
# 1: 1 2 1 1
# 2: 2 0 0 1
Or setting the arguments explicitly:
dcast(setDT(data), id ~ week, value.var = "week", fun = length)
# id 1 2 3
# 1: 1 2 1 1
# 2: 2 0 0 1
For pre-data.table
1.9.2 alternatives, see edits.
A tidyverse
option could be :
library(dplyr)
library(tidyr)
df %>%
count(id, week) %>%
pivot_wider(names_from = week, values_from = n, values_fill = list(n = 0))
#spread(week, n, fill = 0) #In older version of tidyr
# id `1` `2` `3`
# <dbl> <dbl> <dbl> <dbl>
#1 1 2 1 1
#2 2 0 0 1
Using only pivot_wider
-
tidyr::pivot_wider(df, names_from = week,
values_from = week, values_fn = length, values_fill = 0)
Or using tabyl
from janitor
:
janitor::tabyl(df, id, week)
# id 1 2 3
# 1 2 1 1
# 2 0 0 1
data
df <- structure(list(id = c(1L, 1L, 1L, 1L, 2L), week = c(1L, 2L, 3L,
1L, 3L)), class = "data.frame", row.names = c(NA, -5L))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With