Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Fast counting the number of set bits in __m128i register

I should count the number of set bits of a __m128i register. In particular, I should write two functions that are able to count the number of bits of the register, using the following ways.

  1. The total number of set bits of the register.
  2. The number of set bits for each byte of the register.

Are there intrinsic functions that can perform, wholly or partially, the above operations?

like image 919
enzom83 Avatar asked Jun 27 '13 23:06

enzom83


People also ask

How to count set bits in an integer?

Count set bits in an integer 1. Simple Method . Loop through all bits in an integer, check if a bit is set and if it is then increment the set bit... 2. Brian Kernighan’s Algorithm:. Subtracting 1 from a decimal number flips all the bits after the rightmost set bit... 3. Using Lookup table: . We can ...

How to count bits in O (1) time?

1. Simple Method Loop through all bits in an integer, check if a bit is set and if it is then increment the set bit... 2. Brian Kernighan’s Algorithm: Subtracting 1 from a decimal number flips all the bits after the rightmost set bit... 3. Using Lookup table: We can count bits in O (1) time using ...

How to count the number of bits in the SSE register?

Function popcnt64 below counts the number of bits in the low and high 64-bit parts of the SSE register: Finally, the function popcnt128 below count the number of bits in the whole 128-bit register:

How to check if a bit is set in a number?

Each bit in the number is checked for whether it is set or not. The number is bitwise AND with powers of 2, so if the result is not equal to zero, we come to know that the particular bit in the position is set. // and return the total count of the set bits. // and return the total count of the set bits.


2 Answers

Here are some codes I used in an old project (there is a research paper about it). The function popcnt8 below computes the number of bits set in each byte.

SSE2-only version (based on Algorithm 3 in Hacker's Delight book):

static const __m128i popcount_mask1 = _mm_set1_epi8(0x77);
static const __m128i popcount_mask2 = _mm_set1_epi8(0x0F);
static inline __m128i popcnt8(__m128i x) {
    __m128i n;
    // Count bits in each 4-bit field.
    n = _mm_srli_epi64(x, 1);
    n = _mm_and_si128(popcount_mask1, n);
    x = _mm_sub_epi8(x, n);
    n = _mm_srli_epi64(n, 1);
    n = _mm_and_si128(popcount_mask1, n);
    x = _mm_sub_epi8(x, n);
    n = _mm_srli_epi64(n, 1);
    n = _mm_and_si128(popcount_mask1, n);
    x = _mm_sub_epi8(x, n);
    x = _mm_add_epi8(x, _mm_srli_epi16(x, 4));
    x = _mm_and_si128(popcount_mask2, x);
    return x;
}

SSSE3 version (due to Wojciech Mula):

static const __m128i popcount_mask = _mm_set1_epi8(0x0F);
static const __m128i popcount_table = _mm_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
static inline __m128i popcnt8(__m128i n) {
    const __m128i pcnt0 = _mm_shuffle_epi8(popcount_table, _mm_and_si128(n, popcount_mask));
    const __m128i pcnt1 = _mm_shuffle_epi8(popcount_table, _mm_and_si128(_mm_srli_epi16(n, 4), popcount_mask));
    return _mm_add_epi8(pcnt0, pcnt1);
}

XOP version (equivalent to SSSE3, but uses XOP instructions which are faster on AMD Bulldozer)

static const __m128i popcount_mask = _mm_set1_epi8(0x0F);
static const __m128i popcount_table = _mm_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
static const __m128i popcount_shift = _mm_set1_epi8(-4);
static inline __m128i popcount8(__m128i n) {
    const __m128i pcnt0 = _mm_perm_epi8(popcount_table, popcount_table, _mm_and_si128(n, popcount_mask));
    const __m128i pcnt1 = _mm_perm_epi8(popcount_table, popcount_table, _mm_shl_epi8(n, popcount_shift));
    return _mm_add_epi8(pcnt0, pcnt1);
}

Function popcnt64 below counts the number of bits in the low and high 64-bit parts of the SSE register:

SSE2 version:

static inline __m128i popcnt64(__m128i n) {
    const __m128i cnt8 = popcnt8(n);
    return _mm_sad_epu8(cnt8, _mm_setzero_si128());
}

XOP version:

static inline __m128i popcnt64(__m128i n) {
    const __m128i cnt8 = popcnt8(n);
    return _mm_haddq_epi8(cnt8);
}

Finally, the function popcnt128 below count the number of bits in the whole 128-bit register:

static inline int popcnt128(__m128i n) {
    const __m128i cnt64 = popcnt64(n);
    const __m128i cnt64_hi = _mm_unpackhi_epi64(cnt64, cnt64);
    const __m128i cnt128 = _mm_add_epi32(cnt64, cnt64_hi);
    return _mm_cvtsi128_si32(cnt128);
}

However, a more efficient way to implement popcnt128 is to use hardware POPCNT instruction (on processors which support it):

static inline int popcnt128(__m128i n) {
    const __m128i n_hi = _mm_unpackhi_epi64(n, n);
    #ifdef _MSC_VER
        return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
    #else
        return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
    #endif
}
like image 104
Marat Dukhan Avatar answered Nov 10 '22 09:11

Marat Dukhan


Here is a version base on Bit Twiddling Hacks - Counting Set Bits in Parallel with naming similar to other intrinsic functions as well as some extra functions for 16 32 and 64 bit vectors

#include "immintrin.h"

/* bit masks: 0x55 = 01010101, 0x33 = 00110011, 0x0f = 00001111 */
static const __m128i m1 = {0x5555555555555555ULL,0x5555555555555555ULL};
static const __m128i m2 = {0x3333333333333333ULL,0x3333333333333333ULL};
static const __m128i m3 = {0x0f0f0f0f0f0f0f0fULL,0x0f0f0f0f0f0f0f0fULL};
static const __m128i m4 = {0x001f001f001f001fULL,0x001f001f001f001fULL};
static const __m128i m5 = {0x0000003f0000003fULL,0x0000003f0000003fULL};

__m128i _mm_popcnt_epi8(__m128i x) {
    /* Note: if we returned x here it would be like _mm_popcnt_epi1(x) */ 
    __m128i y;
    /* add even and odd bits*/
    y = _mm_srli_epi64(x,1);  //put even bits in odd place
    y = _mm_and_si128(y,m1);  //mask out the even bits (0x55)
    x = _mm_subs_epu8(x,y);   //shortcut to mask even bits and add
    /* if we just returned x here it would be like _mm_popcnt_epi2(x) */ 
    /* now add the half nibbles */
    y = _mm_srli_epi64 (x,2); //move half nibbles in place to add
    y = _mm_and_si128(y,m2);  //mask off the extra half nibbles (0x0f)
    x = _mm_and_si128(x,m2);  //ditto
    x = _mm_adds_epu8(x,y);   //totals are a maximum of 5 bits (0x1f)
    /* if we just returned x here it would be like _mm_popcnt_epi4(x) */ 
    /* now add the nibbles */
    y = _mm_srli_epi64(x,4);  //move nibbles in place to add
    x = _mm_adds_epu8(x,y);   //totals are a maximum of 6 bits (0x3f)
    x = _mm_and_si128(x,m3);  //mask off the extra bits
    return x;
}

__m128i _mm_popcnt_epi16(__m128i x) {
    __m128i y;
    x = _mm_popcnt_epi8(x);    //get byte popcount
    y = _mm_srli_si128(x,1);   //copy even bytes for adding
    x = _mm_add_epi16(x,y);    //add even bytes into the odd bytes
    return _mm_and_si128(x,m4);//mask off the even byte and return
}

__m128i _mm_popcnt_epi32(__m128i x) {
    __m128i y;
    x = _mm_popcnt_epi16(x);   //get word popcount
    y = _mm_srli_si128(x,2);   //copy even words for adding
    x = _mm_add_epi32(x,y);    //add even words into odd words
    return _mm_and_si128(x,m5);//mask off the even words and return
}

__m128i _mm_popcnt_epi64(__m128i x){
    /* _mm_sad_epu8() is weird
       It takes the absolute difference of bytes between 2 __m128i
       then horizontal adds the lower and upper 8 differences
       and stores the sums in the lower and upper 64 bits
    */
    return _mm_sad_epu8(_mm_popcnt_epi8(x),(__m128i){0});
}

int _mm_popcnt_si128(__m128i x){
    x = _mm_popcnt_epi64(x);
    __m128i y = _mm_srli_si128(x,8);
    return _mm_add_epi64(x,y)[0];
    //alternative: __builtin_popcntll(x[0])+__builtin_popcntll(x[1]);
}
like image 21
technosaurus Avatar answered Nov 10 '22 09:11

technosaurus