Exactly how should python models be exported for use in c++?
I'm trying to do something similar to this tutorial: https://www.tensorflow.org/versions/r0.8/tutorials/image_recognition/index.html
I'm trying to import my own TF model in the c++ API in stead of the inception one. I adjusted input size and the paths, but strange errors keep popping up. I spent all day reading stack overflow and other forums but to no avail.
I've tried two methods for exporting the graph.
Method 1: metagraph.
...loading inputs, setting up the model, etc....
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(num_steps):
x_batch, y_batch = batch(50)
if i%10 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:x_batch, y_: y_batch, keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: x_batch, y_: y_batch, keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={
x: features_test, y_: labels_test, keep_prob: 1.0}))
saver = tf.train.Saver(tf.all_variables())
checkpoint =
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/model.ckpt'
saver.save(sess, checkpoint)
tf.train.export_meta_graph(filename=
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/cat_graph.pb',
meta_info_def=None,
graph_def=sess.graph_def,
saver_def=saver.restore(sess, checkpoint),
collection_list=None, as_text=False)
Method 1 yields the following error when trying to run the program:
[libprotobuf ERROR
google/protobuf/src/google/protobuf/wire_format_lite.cc:532] String field
'tensorflow.NodeDef.op' contains invalid UTF-8 data when parsing a protocol
buffer. Use the 'bytes' type if you intend to send raw bytes.
E tensorflow/examples/cat_face/main.cc:281] Not found: Failed to load
compute graph at 'tensorflow/examples/cat_face/data/cat_graph.pb'
I also tried another method of exporting the graph:
Method 2: write_graph:
tf.train.write_graph(sess.graph_def,
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/',
'cat_graph.pb', as_text=False)
This version actually seems to load something, but I get an error about variables not being initialized:
Running model failed: Failed precondition: Attempting to use uninitialized
value weight1
[[Node: weight1/read = Identity[T=DT_FLOAT, _class=["loc:@weight1"],
_device="/job:localhost/replica:0/task:0/cpu:0"](weight1)]]
At first, you need to graph definition to file by using following command
with tf.Session() as sess:
//Build network here
tf.train.write_graph(sess.graph.as_graph_def(), "C:\\output\\", "mymodel.pb")
Then, save your model by using saver
saver = tf.train.Saver(tf.global_variables())
saver.save(sess, "C:\\output\\mymodel.ckpt")
Then, you will have 2 files at your output, mymodel.ckpt, mymodel.pb
Download freeze_graph.py from here and run following command in C:\output\. Change output node name if it is different for you.
python freeze_graph.py --input_graph mymodel.pb --input_checkpoint mymodel.ckpt --output_node_names softmax/Reshape_1 --output_graph mymodelforc.pb
You can use mymodelforc.pb directly from C.
You can use following C code to load the proto file
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/cc/ops/image_ops.h"
Session* session;
NewSession(SessionOptions(), &session);
GraphDef graph_def;
ReadBinaryProto(Env::Default(), "C:\\output\\mymodelforc.pb", &graph_def);
session->Create(graph_def);
Now you can use session for inference.
You can apply inference parameter as following:
// Same dimension and type as input of your network
tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ 1, height, width, channel }));
std::vector<tensorflow::Tensor> finalOutput;
// Fill input tensor with your input data
std::string InputName = "input"; // Your input placeholder's name
std::string OutputName = "softmax/Reshape_1"; // Your output placeholder's name
session->Run({ { InputName, input_tensor } }, { OutputName }, {}, &finalOutput);
// finalOutput will contain the inference output that you search for
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With