Today I went to a math competition and there was a question that was something like this:
You have a given number
n
, now you have to like calculate what's the shortest route to that number, but there are rules.
- You start with number
1
- You end when you reach
n
- You can get to
n
either by doubling your previous number, or by adding two previous numbers.Example:
n = 25
Slowest route :
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25
(You just keep adding1
)Fastest route :
1,2,4,8,16,24,25
, complexity = 6Example:
n = 8
Fastest route :1,2,4,8
, complexity = 3Example :
n = 15
Fastest route :1,2,3,6,9,15
, complexity = 5
How do I make a program that can calculate the complexity of a given number n
(with n <= 32
)?
I already know that for any given number n ( n <= 32 ) that the complexity is lower that 1.45 x 2log(n). So now I only need to calculate all the routes with complexity below 1.45 x 2log(n) and than compare them and see which one is the fastest 'route'. But I have no idea how to put all the routes and all this in python, because the number of routes changes when the given number n changes.
This is what I have for now:
number = raw_input('Enter your number here : ')
startnumber = 1
complexity = 0
while startnumber <= number
I accept the challenge :)
The algorithm is relatively fast. It calculates the complexity of the first 32 numbers in 50ms on my computer, and I don't use multithreading. (or 370ms for the first 100 numbers.)
It is a recursive branch and cut algorithm. The _shortest
function takes 3 arguments: the optimization lies in the max_len
argument. E.g. if the function finds a solution with length=9, it stops considering any paths with a length > 9. The first path that is found is always a pretty good one, which directly follows from the binary representation of the number. E.g. in binary: 111001 => [1,10,100,1000,10000,100000,110000,111000,111001]. That's not always the fastest path, but if you only search for paths that are as least as fast, you can cut away most of the search tree.
#!/usr/bin/env python
# Find the shortest addition chain...
# @param acc List of integers, the "accumulator". A strictly monotonous
# addition chain with at least two elements.
# @param target An integer > 2. The number that should be reached.
# @param max_len An integer > 2. The maximum length of the addition chain
# @return A addition chain starting with acc and ending with target, with
# at most max_len elements. Or None if such an addition chain
# does not exist. The solution is optimal! There is no addition
# chain with these properties which can be shorter.
def _shortest(acc, target, max_len):
length = len(acc)
if length > max_len:
return None
last = acc[-1]
if last == target:
return acc;
if last > target:
return None
if length == max_len:
return None
last_half = (last / 2)
solution = None
potential_solution = None
good_len = max_len
# Quick check: can we make this work?
# (this improves the performance considerably for target > 70)
max_value = last
for _ in xrange(length, max_len):
max_value *= 2
if max_value >= target:
break
if max_value < target:
return None
for i in xrange(length-1, -1, -1):
a = acc[i]
if a < last_half:
break
for j in xrange(i, -1, -1):
b = acc[j]
s = a+b
if s <= last:
break
# modifying acc in-place has much better performance than copying
# the list and doing
# new_acc = list(acc)
# potential_solution = _shortest(new_acc, target, good_len)
acc.append(s)
potential_solution = _shortest(acc, target, good_len)
if potential_solution is not None:
new_len = len(potential_solution)
solution = list(potential_solution)
good_len = new_len-1
# since we didn't copy the list, we have to truncate it to its
# original length now.
del acc[length:]
return solution
# Finds the shortest addition chain reaching to n.
# E.g. 9 => [1,2,3,6,9]
def shortest(n):
if n > 3:
# common case first
return _shortest([1,2], n, n)
if n < 1:
raise ValueError("n must be >= 1")
return list(xrange(1,n+1))
for i in xrange(1,33):
s = shortest(i)
c = len(s) - 1
print ("complexity of %2d is %d: e.g. %s" % (i,c,s))
Output:
complexity of 1 is 0: e.g. [1]
complexity of 2 is 1: e.g. [1, 2]
complexity of 3 is 2: e.g. [1, 2, 3]
complexity of 4 is 2: e.g. [1, 2, 4]
complexity of 5 is 3: e.g. [1, 2, 4, 5]
complexity of 6 is 3: e.g. [1, 2, 4, 6]
complexity of 7 is 4: e.g. [1, 2, 4, 6, 7]
complexity of 8 is 3: e.g. [1, 2, 4, 8]
complexity of 9 is 4: e.g. [1, 2, 4, 8, 9]
complexity of 10 is 4: e.g. [1, 2, 4, 8, 10]
complexity of 11 is 5: e.g. [1, 2, 4, 8, 10, 11]
complexity of 12 is 4: e.g. [1, 2, 4, 8, 12]
complexity of 13 is 5: e.g. [1, 2, 4, 8, 12, 13]
complexity of 14 is 5: e.g. [1, 2, 4, 8, 12, 14]
complexity of 15 is 5: e.g. [1, 2, 4, 5, 10, 15]
complexity of 16 is 4: e.g. [1, 2, 4, 8, 16]
complexity of 17 is 5: e.g. [1, 2, 4, 8, 16, 17]
complexity of 18 is 5: e.g. [1, 2, 4, 8, 16, 18]
complexity of 19 is 6: e.g. [1, 2, 4, 8, 16, 18, 19]
complexity of 20 is 5: e.g. [1, 2, 4, 8, 16, 20]
complexity of 21 is 6: e.g. [1, 2, 4, 8, 16, 20, 21]
complexity of 22 is 6: e.g. [1, 2, 4, 8, 16, 20, 22]
complexity of 23 is 6: e.g. [1, 2, 4, 5, 9, 18, 23]
complexity of 24 is 5: e.g. [1, 2, 4, 8, 16, 24]
complexity of 25 is 6: e.g. [1, 2, 4, 8, 16, 24, 25]
complexity of 26 is 6: e.g. [1, 2, 4, 8, 16, 24, 26]
complexity of 27 is 6: e.g. [1, 2, 4, 8, 9, 18, 27]
complexity of 28 is 6: e.g. [1, 2, 4, 8, 16, 24, 28]
complexity of 29 is 7: e.g. [1, 2, 4, 8, 16, 24, 28, 29]
complexity of 30 is 6: e.g. [1, 2, 4, 8, 10, 20, 30]
complexity of 31 is 7: e.g. [1, 2, 4, 8, 10, 20, 30, 31]
complexity of 32 is 5: e.g. [1, 2, 4, 8, 16, 32]
There is a dynamic programming solution to your problem since you either add any two numbers or multiply a number by 2 we can try all those cases and choose the minimum one also if the complexity of 25 was 5 and the route contains 9 then we know the solution for 9 which is 4 and we can use the solution for 9 to generate the solution for 25.We also need to keep track of every possible minimum solution for m to be able to use it to use it to solve n where m < n
def solve(m):
p = [set([frozenset([])]) for i in xrange(m+1)] #contains all paths to reach n
a = [9999 for _ in xrange(m+1)]
#contains all complexities initialized with a big number
a[1] = 0
p[1] = set([frozenset([1])])
for i in xrange(1,m+1):
for pos in p[i]:
for j in pos: #try adding any two numbers and 2*any number
for k in pos:
if (j+k <= m):
if a[j+k] > a[i]+1:
a[j+k] = a[i] + 1
p[j+k] = set([frozenset(list(pos) + [j+k])])
elif a[j+k] == a[i]+1:
p[j+k].add(frozenset(list(pos) + [j+k]))
return a[m],sorted(list(p[m].pop()))
n = int(raw_input())
print solve(n)
this can solve up to n = 100
For larger numbers you can get a 30% or more speedup by adding a couple lines to remove some redundant calculations from the inner loop. For this the pos2
variable is created and trimmed on each iteration:
def solve(m):
p = [set([frozenset([])]) for i in xrange(m+1)] #contains all paths to reach n
a = [9999 for _ in xrange(m+1)]
#contains all complexities initialized with a big number
a[1] = 0
p[1] = set([frozenset([1])])
for i in xrange(1,m+1):
for pos in p[i]:
pos2 = set(pos)
for j in pos: #try adding any two numbers and 2*any number
for k in pos2:
if (j+k <= m):
if a[j+k] > a[i]+1:
a[j+k] = a[i] + 1
p[j+k] = set([frozenset(list(pos) + [j+k])])
elif a[j+k] == a[i]+1:
p[j+k].add(frozenset(list(pos) + [j+k]))
pos2.remove(j)
return a[m],sorted(list(p[m].pop()))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With