Primary issue: the QGraphicsView.mapToScene
method returns different answers depending on whether or not the GUI is shown. Why, and can I get around it?
The context is I'm trying to write unit tests but I don't want to actually show the tools for the tests.
The small example below illustrates the behavior. I use a sub-classed view that prints mouse click event positions in scene coordinates with the origin at the lower left (it has a -1 scale vertically) by calling mapToScene
. However, mapToScene
does not return what I am expecting before the dialog is shown. If I run the main section at the bottom, I get the following output:
Size is (150, 200)
Putting in (50, 125) - This point should return (50.0, 75.0)
Before show(): PyQt5.QtCore.QPointF(84.0, -20.0)
After show() : PyQt5.QtCore.QPointF(50.0, 75.0)
Before show()
, there is a consistent offset of 34 pixels in x and 105 in y (and in y the offset moves in reverse as if the scale is not being applied). Those offset seem rather random, I have no idea where they are coming from.
Here is the example code:
import numpy as np
from PyQt5.QtCore import pyqtSignal, pyqtSlot, QPointF, QPoint
from PyQt5.QtWidgets import (QDialog, QGraphicsView, QGraphicsScene,
QVBoxLayout, QPushButton, QApplication,
QSizePolicy)
from PyQt5.QtGui import QPixmap, QImage
class MyView(QGraphicsView):
"""View subclass that emits mouse events in the scene coordinates."""
mousedown = pyqtSignal(QPointF)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.setSizePolicy(QSizePolicy.Fixed,
QSizePolicy.Fixed)
# This is the key thing I need
self.scale(1, -1)
def mousePressEvent(self, event):
return self.mousedown.emit(self.mapToScene(event.pos()))
class SimplePicker(QDialog):
def __init__(self, data, parent=None):
super().__init__(parent=parent)
# Get a grayscale image
bdata = ((data - data.min()) / (data.max() - data.min()) * 255).astype(np.uint8)
wid, hgt = bdata.shape
img = QImage(bdata.T.copy(), wid, hgt, wid,
QImage.Format_Indexed8)
# Construct a scene with pixmap
self.scene = QGraphicsScene(0, 0, wid, hgt, self)
self.scene.setSceneRect(0, 0, wid, hgt)
self.px = self.scene.addPixmap(QPixmap.fromImage(img))
# Construct the view and connect mouse clicks
self.view = MyView(self.scene, self)
self.view.mousedown.connect(self.mouse_click)
# End button
self.doneb = QPushButton('Done', self)
self.doneb.clicked.connect(self.accept)
# Layout
layout = QVBoxLayout(self)
layout.addWidget(self.view)
layout.addWidget(self.doneb)
@pyqtSlot(QPointF)
def mouse_click(self, xy):
print((xy.x(), xy.y()))
if __name__ == "__main__":
# Fake data
x, y = np.mgrid[0:4*np.pi:150j, 0:4*np.pi:200j]
z = np.sin(x) * np.sin(y)
qapp = QApplication.instance()
if qapp is None:
qapp = QApplication(['python'])
pick = SimplePicker(z)
print("Size is (150, 200)")
print("Putting in (50, 125) - This point should return (50.0, 75.0)")
p0 = QPoint(50, 125)
print("Before show():", pick.view.mapToScene(p0))
pick.show()
print("After show() :", pick.view.mapToScene(p0))
qapp.exec_()
This example is in PyQt5 on Windows, but PyQt4 on Linux does the same thing.
Upon diving into the C++ Qt source code, this is the Qt definition of mapToScene
for a QPoint:
QPointF QGraphicsView::mapToScene(const QPoint &point) const
{
Q_D(const QGraphicsView);
QPointF p = point;
p.rx() += d->horizontalScroll();
p.ry() += d->verticalScroll();
return d->identityMatrix ? p : d->matrix.inverted().map(p);
}
The critical things there are the p.rx() += d->horizontalScroll();
and likewise vertical scroll. A QGraphicsView always contains scroll bars, even if they are always off or not shown. The offsets observed before the widget is shown are from the values of the horizontal and vertical scroll bars upon initialization, which must get modified to match the view/viewport when the widgets are shown and layouts calculated. In order for mapToScene
to operate properly, the scroll bars must be set up to match the scene/view.
If I put the following lines put before the call to mapToScene
in the example, then I get the appropriate transformation result without the necessity of showing the widget.
pick.view.horizontalScrollBar().setRange(0, 150)
pick.view.verticalScrollBar().setRange(-200, 0)
pick.view.horizontalScrollBar().setValue(0)
pick.view.verticalScrollBar().setValue(-200)
To do this more generally, you can pull some relevant transformations from the view.
# Use the size hint to get shape info
wid, hgt = (pick.view.sizeHint().width()-2,
pick.view.sizeHint().height()-2) # -2 removes padding ... maybe?
# Get the opposing corners through the view transformation
px = pick.view.transform().map(QPoint(wid, 0))
py = pick.view.transform().map(QPoint(0, hgt))
# Set the scroll bars accordingly
pick.view.horizontalScrollBar().setRange(px.y(), px.x())
pick.view.verticalScrollBar().setRange(py.y(), py.x())
pick.view.horizontalScrollBar().setValue(px.y())
pick.view.verticalScrollBar().setValue(py.y())
This is a hack-ish and ugly solution, so while it does work there may be a more elegant way to handle this.
have you tried implementing your own qgraphicsview and overriding your resizeEvent? When you mess around with mapTo"something" you gotta take care of your resizeEvents, have a look in this piece of code I've took from yours and modified a bit ><
from PyQt5.QtCore import QRectF
from PyQt5.QtWidgets import (QGraphicsScene, QGraphicsView, QVBoxLayout,
QApplication, QFrame, QSizePolicy)
from PyQt5.QtCore import QPoint
class GraphicsView(QGraphicsView):
def __init__(self):
super(GraphicsView, self).__init__()
# Scene and view
scene = QGraphicsScene(0, 0, 150, 200,)
scene.setSceneRect(0, 0, 150, 200)
def resizeEvent(self, QResizeEvent):
self.setSceneRect(QRectF(self.viewport().rect()))
qapp = QApplication(['python'])
# Just something to be a parent
view = GraphicsView()
# Short layout
# Make a test point
p0 = QPoint(50, 125)
# Pass in the test point before and after
print("Passing in point: ", p0)
print("Received point before show:", view.mapToScene(p0))
view.show()
print("Received point after show:", view.mapToScene(p0))
qapp.exec_()
Is that the behavior you wanted? ")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With