I've been experimenting a bit with execution from RAM and flash memory on embedded systems. For rapid prototyping and testing I'm currently using an Arduino Due (SAM3X8E ARM Cortex-M3). As far as I can see, the Arduino runtime and bootloader should make no difference here.
Here is the issue: I have a function (calc) which is written in ARM Thumb Assembly. calc calculates a number and returns it. (>1s runtime for the given input) Now I manually extracted the assembled machine code of that function and put it as raw bytes into another function. Both functions are confirmed to reside in flash memory (Address 0x80149 and 0x8017D, right next to each other). This has been confirmed both via disassembly and a runtime check.
void setup() {
Serial.begin(115200);
timeFnc(calc);
timeFnc(calc2);
}
void timeFnc(int (*functionPtr)(void)) {
unsigned long time1 = micros();
int res = (*functionPtr)();
unsigned long time2 = micros();
Serial.print("Address: ");
Serial.print((unsigned int)functionPtr);
Serial.print(" Res: ");
Serial.print(res);
Serial.print(": ");
Serial.print(time2-time1);
Serial.println("us");
}
int calc() {
asm volatile(
"movs r1, #33 \n\t"
"push {r1,r4,r5,lr} \n\t"
"bl .in \n\t"
"pop {r1,r4,r5,lr} \n\t"
"bx lr \n\t"
".in: \n\t"
"movs r5,#1 \n\t"
"subs r1, r1, #1 \n\t"
"cmp r1, #2 \n\t"
"blo .lblb \n\t"
"movs r5,#1 \n\t"
".lbla: \n\t"
"push {r1, r5, lr} \n\t"
"bl .in \n\t"
"pop {r1, r5, lr} \n\t"
"adds r5,r0 \n\t"
"subs r1,#2 \n\t"
"cmp r1,#1 \n\t"
"bhi .lbla \n\t"
".lblb: \n\t"
"movs r0,r5 \n\t"
"bx lr \n\t"
::
); //redundant auto generated bx lr, aware of that
}
int calc2() {
asm volatile(
".word 0xB5322121 \n\t"
".word 0xF803F000 \n\t"
".word 0x4032E8BD \n\t"
".word 0x25014770 \n\t"
".word 0x29023901 \n\t"
".word 0x800BF0C0 \n\t"
".word 0xB5222501 \n\t"
".word 0xFFF7F7FF \n\t"
".word 0x4022E8BD \n\t"
".word 0x3902182D \n\t"
".word 0xF63F2901 \n\t"
".word 0x0028AFF6 \n\t"
".word 0x47704770 \n\t"
);
}
void loop() {
}
Output of the above program on the Arduino Due target is:
Address: 524617 Res: 3524578: 1338254us
Address: 524669 Res: 3524578: 2058819us
So we confirm the results to be equal and the address during runtime to be as expected. Execution of the manually entered machine code function is 50% slower.
Disassembly with arm-none-eabi-objdump further confirms the respective addresses, flash memory residency and equality of the machine code (Note endianness and byte grouping!):
00080148 <_Z4calcv>:
80148: 2121 movs r1, #33 ; 0x21
8014a: b532 push {r1, r4, r5, lr}
8014c: f000 f803 bl 80156 <.in>
80150: e8bd 4032 ldmia.w sp!, {r1, r4, r5, lr}
80154: 4770 bx lr
00080156 <.in>:
80156: 2501 movs r5, #1
80158: 3901 subs r1, #1
8015a: 2902 cmp r1, #2
8015c: f0c0 800b bcc.w 80176 <.lblb>
80160: 2501 movs r5, #1
00080162 <.lbla>:
80162: b522 push {r1, r5, lr}
80164: f7ff fff7 bl 80156 <.in>
80168: e8bd 4022 ldmia.w sp!, {r1, r5, lr}
8016c: 182d adds r5, r5, r0
8016e: 3902 subs r1, #2
80170: 2901 cmp r1, #1
80172: f63f aff6 bhi.w 80162 <.lbla>
00080176 <.lblb>:
80176: 0028 movs r0, r5
80178: 4770 bx lr
}
8017a: 4770 bx lr
0008017c <_Z5calc2v>:
8017c: b5322121 .word 0xb5322121
80180: f803f000 .word 0xf803f000
80184: 4032e8bd .word 0x4032e8bd
80188: 25014770 .word 0x25014770
8018c: 29023901 .word 0x29023901
80190: 800bf0c0 .word 0x800bf0c0
80194: b5222501 .word 0xb5222501
80198: fff7f7ff .word 0xfff7f7ff
8019c: 4022e8bd .word 0x4022e8bd
801a0: 3902182d .word 0x3902182d
801a4: f63f2901 .word 0xf63f2901
801a8: 0028aff6 .word 0x0028aff6
801ac: 47704770 .word 0x47704770
}
801b0: 4770 bx lr
...
We can further confirm the analogously used calling convention:
00080234 <setup>:
void setup() {
80234: b508 push {r3, lr}
Serial.begin(115200);
80236: 4806 ldr r0, [pc, #24] ; (80250 <setup+0x1c>)
80238: f44f 31e1 mov.w r1, #115200 ; 0x1c200
8023c: f000 fcb4 bl 80ba8 <_ZN9UARTClass5beginEm>
timeFnc(calc);
80240: 4804 ldr r0, [pc, #16] ; (80254 <setup+0x20>)
80242: f7ff ffb7 bl 801b4 <_Z7timeFncPFivE>
}
80246: e8bd 4008 ldmia.w sp!, {r3, lr}
timeFnc(calc2);
8024a: 4803 ldr r0, [pc, #12] ; (80258 <setup+0x24>)
8024c: f7ff bfb2 b.w 801b4 <_Z7timeFncPFivE>
80250: 200705cc .word 0x200705cc
80254: 00080149 .word 0x00080149
80258: 0008017d .word 0x0008017d
I can rule out this being due to some kind of speculative fetch (which the Cortex-M3 seemingly has!) or interrupts. (EDIT: NOPE, I can't. Probably some kind of prefetch) Changing the order of execution or adding function calls in between does not change the result. What could be the culprit here?
EDIT: After changing the alignment of the machine code function (insert nops as a prologue) I get the following results:
+16bit for calc2:
Address: 524617 Res: 3524578: 1102257us
Address: 524669 Res: 3524578: 1846968us
+32bit for calc2:
Address: 524617 Res: 3524578: 1102257us
Address: 524669 Res: 3524578: 1535424us
+48bit for calc2:
Address: 524617 Res: 3524578: 1102155us
Address: 524669 Res: 3524578: 1413180us
+64bit for calc2:
Address: 524617 Res: 3524578: 1102155us
Address: 524669 Res: 3524578: 1346606us
+80bit for calc2:
Address: 524617 Res: 3524578: 1102145us
Address: 524669 Res: 3524578: 1180105us
EDIT2: Only running calc:
Address: 524617 Res: 3524578: 1102155us
Only running calc2:
Address: 524617 Res: 3524578: 1102257us
Changing the order:
Address: 524669 Res: 3524578: 1554160us
Address: 524617 Res: 3524578: 1102211us
EDIT3:
Adding .p2align 4
before label .in
for calc only, separate execution:
Address: 524625 Res: 3524578: 1413185us
Both as in original benchmark:
Address: 524625 Res: 3524578: 1413185us
Address: 524689 Res: 3524578: 1535424us
EDIT4: Reversing the position in flash completely changes the outcome. -> Linear prefetch?
The speed of code execution from flash depends on the number of wait cycles and code alignment for each branch target. In this and similar processors, like STM32F103, flash needs 3 wait cycles when the core runs at the highest frequency. This means each taken branch may take between 2 and 5 cycles, which might affect total run time.
To compensate for FLASH slowness, these processors have a wide FLASH bus and a fetch buffer. SAM3X has a pair of 128-bit instruction buffers, which seem to be populated in a prefetch pattern [1].
To optimize a tight loop, try to fit into a 32-byte code block and align it at 16-byte boundary (or better 32, just in case). Also, it could be a good idea to check if FLASH parameters are set up correctly, i.e. prefetch is enabled and bus width is set to 128 bit, in this MCU. Copying code to RAM may be an option, but it's a pain and can actually slow things down, compared to properly working fetch buffers.
[1] http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf, page 294, Figures 18-2, 18-3.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With