I am trying to compare the performance of std::sort
(using std::vector
of structs) vs intel ipp
sort.
I am running this test on an Intel Xeon processor model name : Intel(R) Xeon(R) CPU X5670 @ 2.93GHz
I am sorting a vector of length 20000 elements and sorting 200 times. I have tried 2 diferent ipp
sort routines viz. ippsSortDescend_64f_I
and ippsSortRadixDescend_64f_I
. In all cases, ipp
sort was at least 5 to 10 times slower than std::sort
. I was expecting the ipp
sort maybe slower for smaller arrays but otherwise it should generally be faster than std::sort
. Am I missing something here? What am I doing wrong?
std::sort
is consistently faster in all my test cases.
Here is my program
#include <array>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <sys/timeb.h>
#include <vector>
#include <chrono>
#include "ipp.h"
using namespace std;
const int SIZE = 2000000;
const int ITERS = 200;
//Chrono typedefs
typedef std::chrono::high_resolution_clock Clock;
typedef std::chrono::microseconds microseconds;
//////////////////////////////////// std ///////////////////////////////////
typedef vector<double> myList;
void initialize(myList & l, Ipp64f* ptr)
{
double randomNum;
for (int i = 0; i < SIZE; i++)
{
randomNum = 1.0 * rand() / (RAND_MAX / 2) - 1;
l.push_back(randomNum);
ptr[i] = randomNum;
}
}
void test_sort()
{
array<myList, ITERS> list;
array<Ipp64f*, ITERS> ippList;
// allocate
for(int i=0; i<ITERS;i++)
{
list[i].reserve(SIZE);
ippList[i] = ippsMalloc_64f(SIZE);
}
// initialize
for(int i=0;i<ITERS;i++)
{
initialize(list[i], ippList[i]);
}
cout << "\n\nTest Case 1: std::sort\n";
cout << "========================\n";
// sort vector
Clock::time_point t0 = Clock::now();
for(int i=0; i<ITERS;i++)
{
std::sort(list[i].begin(), list[i].end());
}
Clock::time_point t1 = Clock::now();
microseconds ms = std::chrono::duration_cast<microseconds>(t1 - t0);
std::cout << ms.count() << " micros" << std::endl;
////////////////////////////////// IPP ////////////////////////////////////////
cout << "\n\nTest Case 2: ipp::sort\n";
cout << "========================\n";
// sort ipp
Clock::time_point t2 = Clock::now();
for(int i=0; i<ITERS;i++)
{
ippsSortAscend_64f_I(ippList[i], SIZE);
}
Clock::time_point t3 = Clock::now();
microseconds ms1 = std::chrono::duration_cast<microseconds>(t3 - t2);
std::cout << ms1.count() << " micros" << std::endl;
for(int i=0; i<ITERS;i++)
{
ippsFree( ippList[i] );
}
}
///////////////////////////////////////////////////////////////////////////////////////
int main()
{
srand (time(NULL));
cout << "Test for sorting an array of structures.\n" << endl;
cout << "Test case: \nSort an array of structs ("<<ITERS<<" iterations) with double of length "<<SIZE<<". \n";
IppStatus status=ippInit();
test_sort();
return 0;
}
/////////////////////////////////////////////////////////////////////////////
compilation command is:
/share/intel/bin/icc -O2 -I$(IPPROOT)/include sorting.cpp -lrt -L$(IPPROOT)/lib/intel64 -lippi -lipps -lippvm -lippcore -std=c++0x
Program output:
Test for sorting an array of structures.
Test case:
Sort an array of structs (200 iterations) with double of length 2000000.
Test Case 1: std::sort
========================
38117024 micros
Test Case 2: ipp::sort
========================
48917686 micros
I have run your code on my computer (Core i7 860).
std::sort 32,763,268 (~33s)
ippsSortAscend_64f_I 34,217,517 (~34s)
ippsSortRadixAscend_64f_I 15,319,053 (~15s)
These are the expected results. std::sort is inline and highly optimized, while ippsSort_* has function call overhead and a lot of inner checks performed by all ipp functions. This should explain the little slowdown for ippsSortAscend function. Radix sort is still twice faster as expected, since it is not a comparison based sorting.
for more accurate result you need to
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With