I'm new to signal processing (and numpy, scipy, and matlab for that matter). I'm trying to estimate vowel formants with LPC in Python by adapting this matlab code:
http://www.mathworks.com/help/signal/ug/formant-estimation-with-lpc-coefficients.html
Here is my code so far:
#!/usr/bin/env python
import sys
import numpy
import wave
import math
from scipy.signal import lfilter, hamming
from scikits.talkbox import lpc
"""
Estimate formants using LPC.
"""
def get_formants(file_path):
# Read from file.
spf = wave.open(file_path, 'r') # http://www.linguistics.ucla.edu/people/hayes/103/Charts/VChart/ae.wav
# Get file as numpy array.
x = spf.readframes(-1)
x = numpy.fromstring(x, 'Int16')
# Get Hamming window.
N = len(x)
w = numpy.hamming(N)
# Apply window and high pass filter.
x1 = x * w
x1 = lfilter([1., -0.63], 1, x1)
# Get LPC.
A, e, k = lpc(x1, 8)
# Get roots.
rts = numpy.roots(A)
rts = [r for r in rts if numpy.imag(r) >= 0]
# Get angles.
angz = numpy.arctan2(numpy.imag(rts), numpy.real(rts))
# Get frequencies.
Fs = spf.getframerate()
frqs = sorted(angz * (Fs / (2 * math.pi)))
return frqs
print get_formants(sys.argv[1])
Using this file as input, my script returns this list:
[682.18960189917243, 1886.3054773107765, 3518.8326108511073, 6524.8112723782951]
I didn't even get to the last steps where they filter the frequencies by bandwidth because the frequencies in the list aren't right. According to Praat, I should get something like this (this is the formant listing for the middle of the vowel):
Time_s F1_Hz F2_Hz F3_Hz F4_Hz
0.164969 731.914588 1737.980346 2115.510104 3191.775838
What am I doing wrong?
Thanks very much
I changed this
x1 = lfilter([1., -0.63], 1, x1)
to
x1 = lfilter([1], [1., 0.63], x1)
as per Warren Weckesser's suggestion and am now getting
[631.44354635609318, 1815.8629524985781, 3421.8288991389031, 6667.5030877036006]
I feel like I'm missing something since F3 is very off.
I realized that the order
being passed to scikits.talkbox.lpc
was off due to a difference in sampling frequency. Changed it to:
Fs = spf.getframerate()
ncoeff = 2 + Fs / 1000
A, e, k = lpc(x1, ncoeff)
Now I'm getting:
[257.86573127888488, 774.59006835496086, 1769.4624576002402, 2386.7093679399809, 3282.387975973973, 4413.0428174593926, 6060.8150432549655, 6503.3090645887842, 7266.5069407315023]
Much closer to Praat's estimation!
The problem had to do with the order being passed to the lpc function. 2 + fs / 1000
where fs
is the sampling frequency is the rule of thumb according to:
http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect10.html
I have not been able to get the results you expect, but I do notice two things which might cause some differences:
[1, -0.63]
where the MATLAB code from the link you provided has [1 0.63]
. x
vector at once instead of smaller segments of it (see where the MATLAB code does this: x = mtlb(I0:Iend);
).Hope that helps.
There are at least two problems:
According to the link, the "pre-emphasis filter is a highpass all-pole (AR(1)) filter". The signs of the coefficients given there are correct: [1, 0.63]
. If you use [1, -0.63]
, you get a lowpass filter.
You have the first two arguments to scipy.signal.lfilter
reversed.
So, try changing this:
x1 = lfilter([1., -0.63], 1, x1)
to this:
x1 = lfilter([1.], [1., 0.63], x1)
I haven't tried running your code yet, so I don't know if those are the only problems.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With