pandas.read_csv() infers the types of columns, but I can't get it to infer any datetime or timedelta type (e.g. datetime64
, timedelta64
) for columns whose values seem like obvious datetimes and time deltas.
Here's an example CSV file:
datetime,timedelta,integer,number,boolean,string
20111230 00:00:00,one hour,10,1.6,True,Foobar
And some code to read it with pandas:
dataframe = pandas.read_csv(path)
The types of the columns on that dataframe come out as object, object, int, float, bool, object. They're all as I would expect except the first two columns, which I want to be datetime and timedelta.
Is it possible to get pandas to automatically detect datetime and timedelta columns?
(I don't want to have to tell pandas which columns are datetimes and timedeltas or tell it the formats, I want it to try and detect them automatically like it does for into, float and bool columns.)
One thing you can do is define your date parser using strptime
, this will handle your date format, this isn't automatic though:
In [59]:
import pandas as pd
import datetime as dt
def parse_dates(x):
return dt.datetime.strptime(x, '%Y%m%d %H:%M:%S')
# dict for word lookup, conversion
word_to_int={'zero':0,
'one':1,
'two':2,
'three':3,
'four':4,
'five':5,
'six':6,
'seven':7,
'eight':8,
'nine':9}
def str_to_time_delta(x):
num = 0
if 'hour' in x.lower():
num = x[0:x.find(' ')].lower()
return dt.timedelta( hours = word_to_int[num])
df = pd.read_csv(r'c:\temp1.txt', parse_dates=[0],date_parser=parse_dates)
df.dtypes
Out[59]:
datetime datetime64[ns]
timedelta object
integer int64
number float64
boolean bool
string object
dtype: object
In [60]:
Then to convert to timedeltas use the dict and function to parse and convert to timedeltas
df['timedelta'] = df['timedelta'].map(str_to_time_delta)
In [61]:
df.dtypes
Out[61]:
datetime datetime64[ns]
timedelta timedelta64[ns]
integer int64
number float64
boolean bool
string object
dtype: object
In [62]:
df
Out[62]:
datetime timedelta integer number boolean string
0 2011-12-30 00:00:00 01:00:00 10 1.6 True Foobar
[1 rows x 6 columns]
To answer your principal question I don't know of a way to automatically do this.
EDIT
Instead of my convoluted mapping function you can do just this:
df['timedelta'] = pd.to_timedelta(df['timedelta'])
Further edit
As noted by @Jeff you can do this instead of using strptime
when reading the csv (in version 0.13.1 and above though):
df = pd.read_csv(r'c:\temp1.txt', parse_dates=[0], infer_datetime_format=True)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With