I want to perform k-fold cross validation using pyspark to finetune the parameters and I'm using pyspark.ml. I am getting Attribute Error.
AttributeError: 'DataFrame' object has no attribute '_jdf'
I have tried initially using pyspark.mllib but was not able to succeed in performing k-fold cross validation
import pandas as pd
from pyspark import SparkConf, SparkContext
from pyspark.ml.classification import DecisionTreeClassifier
data=pd.read_csv("file:///SparkCourse/wdbc.csv", header=None)
type(data)
print(data)
conf = SparkConf().setMaster("local").setAppName("SparkDecisionTree")
sc = SparkContext(conf = conf)
# Create initial Decision Tree Model
dt = DecisionTreeClassifier(labelCol="label", featuresCol="features",
maxDepth=3)
# Train model with Training Data
dtModel = dt.fit(data)
# I expect the model to be trained but I'm getting the following error
AttributeError: 'DataFrame' object has no attribute '_jdf'
Note: I'm able to print the data. Error is in dtModel
Convert Panadas to Spark
from pyspark.sql import SQLContext
sc = SparkContext.getOrCreate()
sqlContext = SQLContext(sc)
spark_dff = sqlContext.createDataFrame(panada_df)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With