I have polynomials of nontrivial degree (4+) and need to robustly and efficiently determine whether or not they have a root in the interval [0,T]. The precise location or number of roots don't concern me, I just need to know if there is at least one.
Right now I'm using interval arithmetic as a quick check to see if I can prove that no roots can exist. If I can't, I'm using Jenkins-Traub to solve for all of the polynomial roots. This is obviously inefficient since it's checking for all real roots and finding their exact positions, information I don't end up needing.
Is there a standard algorithm I should be using? If not, are there any other efficient checks I could do before doing a full Jenkins-Traub solve for all roots?
For example, one optimization I could do is to check if my polynomial f(t) has the same sign at 0 and T. If not, there is obviously a root in the interval. If so, I can solve for the roots of f'(t) and evaluate f at all roots of f' in the interval [0,T]. f(t) has no root in that interval if and only if all of these evaluations have the same sign as f(0) and f(T). This reduces the degree of the polynomial I have to root-find by one. Not a huge optimization, but perhaps better than nothing.
The intermediate value theorem is a theorem we use to prove that a function has a root inside a particular interval. The root of a function, graphically, is a point where the graph of the function crosses the x-axis. Algebraically, the root of a function is the point where the function's value is equal to 0.
Finding one root If f is a polynomial, the computation is faster when using Horner's method or evaluation with preprocessing for computing the polynomial and its derivative in each iteration.
To prove that the equation has at least one real root, we will rewrite the equation as a function, then find a value of x that makes the function negative, and one that makes the function positive. . The function f is continuous because it is the sum or difference of a continuous inverse trig function and a polynomial.
♠ Halley's Method. F (xn) F(x) − 1 2 (F (xn) F (xn) ) . This method is slower than the previous method but involves less arithmetic, and is considered very good for finding real root of polynomials along with the Horner's method.
Sturm's theorem lets you calculate the number of real roots in the range (a, b)
. Given the number of roots, you know if there is at least one. From the bottom half of page 4 of this paper:
Let f(x) be a real polynomial. Denote it by f0(x) and its derivative f′(x) by f1(x). Proceed as in Euclid's algorithm to find
f0(x) = q1(x) · f1(x) − f2(x),
f1(x) = q2(x) · f2(x) − f3(x),
.
.
.
fk−2(x) = qk−1(x) · fk−1(x) − fk,
where fk is a constant, and for 1 ≤ i ≤ k, fi(x) is of degree lower than that of fi−1(x). The signs of the remainders are negated from those in the Euclid algorithm.
Note that the last non-vanishing remainder fk (or fk−1 when fk = 0) is a greatest common divisor of f(x) and f′(x). The sequence f0, f1,. . ., fk (or fk−1 when fk = 0) is called a Sturm sequence for the polynomial f.
Theorem 1 (Sturm's Theorem) The number of distinct real zeros of a polynomial f(x) with real coefficients in (a, b) is equal to the excess of the number of changes of sign in the sequence f0(a), ..., fk−1(a), fk over the number of changes of sign in the sequence f0(b), ..., fk−1(b), fk.
You could certainly do binary search on your interval arithmetic. Start with [0,T] and substitute it into your polynomial. If the result interval does not contain 0, you're done. If it does, divide the interval in 2 and recurse on each half. This scheme will find the approximate location of each root pretty quickly.
If you eventually get 4 separate intervals with a root, you know you are done. Otherwise, I think you need to get to intervals [x,y] where f'([x,y]) does not contain zero, meaning that the function is monotonically increasing or decreasing and hence contains at most one zero. Double roots might present a problem, I'd have to think more about that.
Edit: if you suspect a multiple root, find roots of f' using the same procedure.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With