I have nc
columns in a data.table, and nc
scalars in a vector. I want to take a linear combination of the columns, but I don't know ahead of time which columns I will be using. What is the most efficient way to do this?
require(data.table)
set.seed(1)
n <- 1e5
nc <- 5
cf <- setNames(rnorm(nc),LETTERS[1:nc])
DT <- setnames(data.table(replicate(nc,rnorm(n))),LETTERS[1:nc])
Suppose I want to use the first four columns. I can manually write:
DT[,list(cf['A']*A+cf['B']*B+cf['C']*C+cf['D']*D)]
I can think of two automatic ways (that work without knowing that A-E should all be used):
mycols <- LETTERS[1:4] # the first four columns
DT[,list(as.matrix(.SD)%*%cf[mycols]),.SDcols=mycols]
DT[,list(Reduce(`+`,Map(`*`,cf[mycols],.SD))),.SDcols=mycols]
I expect the as.matrix
to make the second option slow, and really have no intuition for the speed of Map
-Reduce
combinations.
require(rbenchmark)
options(datatable.verbose=FALSE) # in case you have it turned on
benchmark(
manual=DT[,list(cf['A']*A+cf['B']*B+cf['C']*C+cf['D']*D)],
coerce=DT[,list(as.matrix(.SD)%*%cf[mycols]),.SDcols=mycols],
maprdc=DT[,list(Reduce(`+`,Map(`*`,cf[mycols],.SD))),.SDcols=mycols]
)[,1:6]
test replications elapsed relative user.self sys.self
2 coerce 100 2.47 1.342 1.95 0.51
1 manual 100 1.84 1.000 1.53 0.31
3 maprdc 100 2.40 1.304 1.62 0.75
I get anywhere from a 5% to 40% percent slowdown relative to the manual approach when I repeat the benchmark
call.
The dimensions here -- n
and length(mycols)
-- are close to what I am working with, but I will be running these computations many times, altering the coefficient vector, cf
.
This is almost 2x faster for me than your manual version:
Reduce("+", lapply(names(DT), function(x) DT[[x]] * cf[x]))
benchmark(manual = DT[, list(cf['A']*A+cf['B']*B+cf['C']*C+cf['D']*D)],
reduce = Reduce('+', lapply(names(DT), function(x) DT[[x]] * cf[x])))
# test replications elapsed relative user.self sys.self user.child sys.child
#1 manual 100 1.43 1.744 1.08 0.36 NA NA
#2 reduce 100 0.82 1.000 0.58 0.24 NA NA
And to iterate over just mycols
, replace names(DT)
with mycols
in lapply
.
Add this option to your benchmark call:
ops = as.matrix(DT) %*% cf
On my device it was 30% faster than the matrix multiplication you tried.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With