How can one create a new file descriptor from an existing file descriptor such that the new descriptor does not share the same internal file structure/entry in the file table? Specifically attributes such as file offset (and preferably permissions, sharing and modes) should not be shared between the new and old file descriptors.
Under both Windows and Linux, dup()
will duplicate the file descriptor, but both descriptors still point to the same file structure in the process' file table. Any seeking on either descriptor will adjust the position for the other descriptors as well.
Note
I've since received answers for both Windows and Linux and adjusted the question a little too often, which has made it difficult for people to answer. I'll adjust my votes and accept the cleanest answer which covers both Windows and Linux. Apologies to all, I'm still new to the SO paradigm. Thanks for the great answers!
The major use of duplicating a file descriptor is to implement redirection of input or output: that is, to change the file or pipe that a particular file descriptor corresponds to.
Pointers to the Open File Table: One process can have multiple file descriptors point to the same entry (e.g., as a result of a call to dup() ) Multiple processes (e.g., a parent and child) can have file descriptors that point to the same entry.
After using the dup() system call, a copy of file_desc is created copy_desc. This copy can also be used to do some file operation with the same file “dup. txt”. After two write operations one with file_desc and another with copy_desc, same file is edited i.e. “dup.
Since a file descriptor may be reused, there are some obscure race conditions that may cause unintended side effects.
So basically, what you really want is to be given a file descriptor, and basically open the same file over again, to get a separate position, sharing, mode, etc. And you want to do this on Windows (where the "file descriptor" is basically a foreign object, not something used directly by the OS or the run-time library at all.
Amazingly enough, there is a way to do that, at least with MS VC++. All but two steps of it use only the Win32 API so porting to other compilers/libraries should be fairly reasonable (I think most supply versions of those two functions). Those are for converting a Unix-style file descriptor to a native Win32 file handle, and converting a native Win32 file handle back to a Unix-style file descriptor.
Et voilà, we have a new file descriptor referring to the same file, but with its own permissions, position, etc.
Toward the end of your question, you make it sound like you also want the "permissions", but that doesn't seem to make any real sense -- the permissions attach to the file itself, not to how the file is opened, so opening or reopening the file has no effect on the file's permissions. If you really want to know the, you can get it with GetFileInformationByHandle, but be aware that file permissions in Windows are quite a bit different from the (traditional) file permissions in Unix. Unix has owner/group/world permissions on all files, and most systems also have ACLs (though there's more variation in how they work). Windows either has no permissions at all (e.g., files on FAT or FAT32) or else uses ACLs (e.g., files on NTFS), but nothing that's really equivalent to the traditional owner/group/world permissions most people are accustomed to on Unix.
Perhaps you're using "permissions" to refer to whether the file was open for reading, writing, or both. Getting that is considerably uglier than any of the preceding. The problem is that most of it is in the library, not Win32, so there's probably no way to do it that will be even close to portable between compilers. With MS VC++ 9.0 SP1 (not guaranteed for any other compiler) you can do this:
#include <stdio.h>
int get_perms(int fd) {
int i;
FILE * base = __iob_func();
for (i=0; i<_IOB_ENTRIES; i++)
if (base[i]._file == fd)
return base[i]._flag; // we've found our file
return 0; // file wasn't found.
}
Since this involved some spelunking, I wrote a quick test to verify that it might actually work:
#ifdef TEST
#include <io.h>
void show_perms(int perms, char const *caption) {
printf("File opened for %s\n", caption);
printf("Read permission = %d\n", (perms & _IOREAD)!=0);
printf("Write permission = %d\n", (perms & _IOWRT)!=0);
}
int main(int argc, char **argv) {
FILE *file1, *file2;
int perms1, perms2;
file1=fopen(argv[1], "w");
perms1 = get_perms(_fileno(file1));
fclose(file1);
file2=fopen(argv[1], "r");
perms2 = get_perms(_fileno(file2));
fclose(file2);
show_perms(perms1, "writing");
show_perms(perms2, "reading");
return 0;
}
#endif
And the results seem to indicate success:
File opened for writing
Read permission = 0
Write permission = 1
File opened for reading
Read permission = 1
Write permission = 0
You can then test that returned flag against _IOREAD, _IOWRT, and _IORW, which are defined in stdio.h. Despite my previous warnings, I should probably point out that I suspect (though I certainly can't guarantee) that this part of the library is fairly stable, so the real chances of major changes are probably fairly minimal.
In the other direction, however, there's basically no chance at all that it'll work with any other library. It could (but certainly isn't guaranteed to) work with the other compilers that use the MS library, such as Intel, MinGW or Comeau using MS VC++ as its back-end. Of those, I'd say the most likely to work would be Comeau, and the least likely MinGW (but that's only a guess; there's a good chance it won't work with any of them).
So, I recommend reading up on this a little more. The dup()
and related functions serve to create a duplicate value in the file descriptor table pointing to the same entry in the open file table. This is intended to have the same offset. If you call open()
, you will create a new entry the open file table.
It doesn't make any sense to create a duplicate of a file descriptor and that new file descriptor have a different offset in the open file table (this seems to contradict what the word "duplicate" means).
I'm not sure what your question is actually. I mean, it isn't the same thing as a duplicate. You could read:
/proc/self/fd/[descriptor]
and get the string that was used to open that file descriptor; bear in mind this may provide some pitfalls, some of which you actually noted in your observation of calling open()
again.
Maybe you can explain a little more and I can try to update to help.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With