During the data analysis operation on a dataframe, you may need to drop a column in Pandas. You can drop column in pandas dataframe using the df. drop(“column_name”, axis=1, inplace=True) statement.
Method 1: Drop the specific value by using Operators We can use the column_name function along with the operator to drop the specific value.
Here is one way to do this:
df = df[df.columns.drop(list(df.filter(regex='Test')))]
import pandas as pd
import numpy as np
array=np.random.random((2,4))
df=pd.DataFrame(array, columns=('Test1', 'toto', 'test2', 'riri'))
print df
Test1 toto test2 riri
0 0.923249 0.572528 0.845464 0.144891
1 0.020438 0.332540 0.144455 0.741412
cols = [c for c in df.columns if c.lower()[:4] != 'test']
df=df[cols]
print df
toto riri
0 0.572528 0.144891
1 0.332540 0.741412
str.contains
In recent versions of pandas, you can use string methods on the index and columns. Here, str.startswith
seems like a good fit.
To remove all columns starting with a given substring:
df.columns.str.startswith('Test')
# array([ True, False, False, False])
df.loc[:,~df.columns.str.startswith('Test')]
toto test2 riri
0 x x x
1 x x x
For case-insensitive matching, you can use regex-based matching with str.contains
with an SOL anchor:
df.columns.str.contains('^test', case=False)
# array([ True, False, True, False])
df.loc[:,~df.columns.str.contains('^test', case=False)]
toto riri
0 x x
1 x x
if mixed-types is a possibility, specify na=False
as well.
This can be done neatly in one line with:
df = df.drop(df.filter(regex='Test').columns, axis=1)
You can filter out the columns you DO want using 'filter'
import pandas as pd
import numpy as np
data2 = [{'test2': 1, 'result1': 2}, {'test': 5, 'result34': 10, 'c': 20}]
df = pd.DataFrame(data2)
df
c result1 result34 test test2
0 NaN 2.0 NaN NaN 1.0
1 20.0 NaN 10.0 5.0 NaN
Now filter
df.filter(like='result',axis=1)
Get..
result1 result34
0 2.0 NaN
1 NaN 10.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With