I'm aware of similar questions here and here, but I haven't been able to figure out the right solution for my specific situation. Some of what I'm finding are solutions which use mutate_
, etc but I understand these are now obsolete. I'm new to dynamic usages of dplyr.
I have a dataframe which includes some variables with two different prefixes, alpha and beta:
df <- data.frame(alpha.num = c(1, 3, 5, 7),
alpha.char = c("a", "c", "e", "g"),
beta.num = c(2, 4, 6, 8),
beta.char = c("b", "d", "f", "h"),
which.to.use = c("alpha", "alpha", "beta", "beta"))
I want to create new variables with the prefix "chosen." which are copies of either the "alpha" or "beta" columns depending on which is named for that row in the "which.to.use" column. The desired output would be:
desired.df <- data.frame(alpha.num = c(1, 3, 5, 7),
alpha.char = c("a", "c", "e", "g"),
beta.num = c(2, 4, 6, 8),
beta.char = c("b", "d", "f", "h"),
which.to.use = c("alpha", "alpha", "beta", "beta"),
chosen.num = c(1, 3, 6, 8),
chosen.char = c("a", "c", "f", "h"))
My failed attempt:
varnames <- c("num", "char")
df %<>%
mutate(as.name(paste0("chosen.", varnames)) := case_when(
which.to.use == "alpha" ~ paste0("alpha.", varnames),
which.to.use == "beta" ~ pasteo("beta.", varnames)
))
I'd prefer a pure dplyr solution, and even better would be one which could be included in a longer pipe modifying the df (i.e. no need to stop to create "varnames"). Thanks for your help.
Using some fun rlang
stuff & purrr
:
library(rlang)
library(purrr)
library(dplyr)
df <- data.frame(alpha.num = c(1, 3, 5, 7),
alpha.char = c("a", "c", "e", "g"),
beta.num = c(2, 4, 6, 8),
beta.char = c("b", "d", "f", "h"),
which.to.use = c("alpha", "alpha", "beta", "beta"),
stringsAsFactors = F)
c("num", "char") %>%
map(~ mutate(df, !!sym(paste0("chosen.", .x)) :=
case_when(
which.to.use == "alpha" ~ !!sym(paste0("alpha.", .x)),
which.to.use == "beta" ~ !!sym(paste0("beta.", .x))
))) %>%
reduce(full_join)
Result:
alpha.num alpha.char beta.num beta.char which.to.use chosen.num chosen.char
1 1 a 2 b alpha 1 a
2 3 c 4 d alpha 3 c
3 5 e 6 f beta 6 f
4 7 g 8 h beta 8 h
Without reduce(full_join)
:
c("num", "char") %>%
map_dfc(~ mutate(df, !!sym(paste0("chosen.", .x)) :=
case_when(
which.to.use == "alpha" ~ !!sym(paste0("alpha.", .x)),
which.to.use == "beta" ~ !!sym(paste0("beta.", .x))
))) %>%
select(-ends_with("1"))
alpha.num alpha.char beta.num beta.char which.to.use chosen.num chosen.char
1 1 a 2 b alpha 1 a
2 3 c 4 d alpha 3 c
3 5 e 6 f beta 6 f
4 7 g 8 h beta 8 h
Explanation:
(Note: I do not fully or even kind of get rlang
. Maybe others can give a better explanation ;).)
Using paste0
by itself produces a string, when we need a bare name for mutate
to know it is referring to a variable name.
If we wrap paste0
in sym
, it evaluates to a bare name:
> x <- varrnames[1]
> sym(paste0("alpha.", x))
alpha.num
But mutate
does not know to evaluate and instead read it as a symbol:
> typeof(sym(paste0("alpha.", x)))
[1] "symbol"
The "bang bang" !!
operator evaluates the sym
function. Compare:
> expr(mutate(df, var = sym(paste0("alpha.", x))))
mutate(df, var = sym(paste0("alpha.", x)))
> expr(mutate(df, var = !!sym(paste0("alpha.", x))))
mutate(df, var = alpha.num)
So with !!sym
we can use paste to dynamically called variable names with dplyr.
This is a nest()/map()
strategy that should be pretty fast. It stays in the tidyverse
, but doesn't go into rlang
land.
library(tidyverse)
df %>%
nest(-which.to.use) %>%
mutate(new_data = map2(data, which.to.use,
~ select(..1, matches(..2)) %>%
rename_all(funs(gsub(".*\\.", "choosen.", .) )))) %>%
unnest()
which.to.use alpha.num alpha.char beta.num beta.char choosen.num choosen.char
1 alpha 1 a 2 b 1 a
2 alpha 3 c 4 d 3 c
3 beta 5 e 6 f 6 f
4 beta 7 g 8 h 8 h
It grabs all columns, not just num
and char
, that are not which.to.use
. But that seems like what you (I) would want IRL. You could add a select(matches('(var1|var2|etc'))
line before you call nest()
if you wanted to pull only specific variables.
EDIT:
My original suggestion of using select()
to drop unneeded columns would result in doing a join
to bring them back later. If instead you adjust the nest
parameters, you can acheive this on only certain columns.
I added new bool
columns here, but they will be ignored for the "choosen" selection:
new_df <- data.frame(alpha.num = c(1, 3, 5, 7),
alpha.char = c("a", "c", "e", "g"),
alpha.bool = FALSE,
beta.num = c(2, 4, 6, 8),
beta.char = c("b", "d", "f", "h"),
beta.bool = TRUE,
which.to.use = c("alpha", "alpha", "beta", "beta"),
stringsAsFactors = FALSE)
new_df %>%
nest(matches("num|char")) %>% # only columns that match this pattern get nested, allows you to save others
mutate(new_data = map2(data, which.to.use,
~ select(..1, matches(..2)) %>%
rename_all(funs(gsub(".*\\.", "choosen.", .) )))) %>%
unnest()
alpha.bool beta.bool which.to.use alpha.num alpha.char beta.num beta.char choosen.num choosen.char
1 FALSE TRUE alpha 1 a 2 b 1 a
2 FALSE TRUE alpha 3 c 4 d 3 c
3 FALSE TRUE beta 5 e 6 f 6 f
4 FALSE TRUE beta 7 g 8 h 8 h
A base R approach using apply
with margin = 1
where we select columns for each row based on the value in which.to.use
column and get the value from corresponding column for the row.
df[c("chosen.num", "chosen.char")] <-
t(apply(df, 1, function(x) x[grepl(x["which.to.use"], names(df))]))
df
# alpha.num alpha.char beta.num beta.char which.to.use chosen.num chosen.char
#1 1 a 2 b alpha 1 a
#2 3 c 4 d alpha 3 c
#3 5 e 6 f beta 6 f
#4 7 g 8 h beta 8 h
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With