Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Does anyone know what "Quantum Computing" is?

People also ask

Does quantum computing really exist?

This is, in essence, why quantum computing is still in its infancy. Most quantum computers currently work with less than 100 qubits, and tech giants such as IBM and Google are racing to increase that number in order to build a meaningful quantum computer as early as possible.

What is quantum computing in simple words?

Quantum computing is an area of study focused on the development of computer based technologies centered around the principles of quantum theory. Quantum theory explains the nature and behavior of energy and matter on the quantum (atomic and subatomic) level.

Is quantum computing difficult to understand?

Quantum computers are exceedingly difficult to engineer, build and program. As a result, they are crippled by errors in the form of noise, faults and loss of quantum coherence, which is crucial to their operation and yet falls apart before any nontrivial program has a chance to run to completion.

Do our brains use quantum computing?

“Does the brain use quantum mechanics? That's a perfectly legitimate question,” says Fisher. On one level, he is right – and the answer is yes. The brain is composed of atoms, and atoms follow the laws of quantum physics.


I have done research in quantum computing, and here is what I hope is an informed answer.

It is often said that qubits as you see them in a quantum computer can exist in a "superposition" of 0 and 1. This is true, but in a more subtle way than you might first guess. Even with a classical computer with randomness, a bit can exist in a superposition of 0 and 1, in the sense that it is 0 with some probability and 1 with some probability. Just as when you roll a die and don't look at the outcome, or receive e-mail that you haven't yet read, you can view its state as a superposition of the possibilities. Now, this may sound like just flim-flam, but the fact is that this type of superposition is a kind of parallelism and that algorithms that make use of it can be faster than other algorithms. It is called randomized computation, and instead of superposition you can say that the bit is in a probabilistic state.

The difference between that and a qubit is that a qubit can have a fat set of possible superpositions with more properties. The set of probabilistic states of an ordinary bit is a line segment, because all there is a probability of 0 or 1. The set of states of a qubit is a round 3-dimensional ball. Now, probabilistic bit strings are more complicated and more interesting than just individual probabilistic bits, and the same is true of strings of qubits. If you can make qubits like this, then actually some computational tasks wouldn't be any easier than before, just as randomized algorithms don't help with all problems. But some computational problems, for example factoring numbers, have new quantum algorithms that are much faster than any known classical algorithm. It is not a matter of clock speed or Moore's law, because the first useful qubits could be fairly slow and expensive. It is only sort-of parallel computation, just as an algorithm that makes random choices is only in weak sense making all choices in parallel. But it is "randomized algorithms on steroids"; that's my favorite summary for outsiders.

Now the bad news. In order for a classical bit to be in a superposition, it has be a random choice that is secret from you. Once you look a flipped coin, the coin "collapses" to either heads for sure or tails for sure. The difference between that and a qubit is that in order for a qubit to work as one, its state has to be secret from the rest of the physical universe, not just from you. It has to be secret from wisps of air, from nearby atoms, etc. On the other hand, for qubits to be useful for a quantum computer, there has to be a way to manipulate them while keeping their state a secret. Otherwise its quantum randomness or quantum coherence is wrecked. Making qubits at all isn't easy, but it is done routinely. Making qubits that you can manipulate with quantum gates, without revealing what is in them to the physical environment, is incredibly difficult.

People don't know how to do that except in very limited toy demonstrations. But if they could do it well enough to make quantum computers, then some hard computational problems would be much easier for these computers. Others wouldn't be easier at all, and great deal is unknown about which ones can be accelerated and by how much. It would definitely have various effects on cryptography; it would break the widely used forms of public-key cryptography. But other kinds of public-key cryptography have been proposed that could be okay. Moreover quantum computing is related to the quantum key distribution technique which looks very safe, and secret-key cryptography would almost certainly still be fairly safe.


The other factor where the word "quantum" computing is used regards an "entangled pair". Essentially if you can create an entangled pair of particles which have a physical "spin", quantum physics dictates that the spin on each electron will always be opposite.

If you could create an entangled pair and then separate them, you could use the device to transmit data without interception, by changing the spin on one of the particles. You can then create a signal which is modulated by the particle's information which is theoretically unbreakable, as you cannot know what spin was on the particles at any given time by intercepting the information in between the two signal points.

A whole lot of very interested organisations are researching this technique for secure communications.


Yes, there is quantum encryption, by which if someone tries to spy on your communication, it destroys the datastream such that neither they nor you can read it.

However, the real power of quantum computing lies in that a qubit can have a superposition of 0 and 1. Big deal. However, if you have, say, eight qubits, you can now represent a superposition of all integers from 0 to 255. This lets you do some rather interesting things in polynomial instead of exponential time. Factorization of large numbers (IE, breaking RSA, etc.) is one of them.


There are a number of applications of quantum computing.

One huge one is the ability to solve NP-hard problems in P-time, by using the indeterminacy of qubits to essentially brute-force the problem in parallel. (The struck-out sentence is false. Quantum computers do not work by brute-forcing all solutions in parallel, and they are not believed to be able to solve NP-complete problems in polynomial time. See e.g. here.)


Just a update of quantum computing industry base on Greg Kuperberg's answer:

D-Wave 2 System is using quantum annealing.

The superposition quantum states will collapse to a unique state when a observation happened. The current technologies of quantum annealing is apply a physical force to 2 quantum bits, the force adds constrains to qubits so when observation happened, the qubit will have higher probability to collapse to a result that we are willing to see.

Reference:

  1. How does a quantum machine work

I monitor recent non-peer reviewed articles on the subject, this is what I extrapolate from what I have read. a qubit, in addition to what has been said above. namely that they can hold values in superposition, they can also hold multiple bits, for example spin up/+ spin down/+ spin -/vertical , I need to abbreviate +H,-H,+V,-V Left+, LH,LV also not all of the combinations are valid and there are additional values that can be placed on the type of qubit each used similar to ram vs rom etc. photon with a wavelength, electron with a charge, photon with a charge, photon with a spin, you get the idea, some combinations are not valid and some require additional algorithms in order to pass the argument to the next variable(location where data is stored) or qubit(location of superposition of values to be returned, if you will simply because the use of wires is by necessity limited due to size and space. One of the greatest challenges is controlling or removing Q.(quantum) decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. November 2011 researchers factorised 143 using 4 qubits. that same year, D-Wave Systems announced the first commercial quantum annealer on the market by the name D-Wave One. The company claims this system uses a 128 qubit processor chipset.May 2013, Google Inc announced that it was launching the Q. AI. Lab, hopefully to boost AI. I really do Hope I didn't waste anyones time with things they already knew. If you learned something please up. As I can not yet comment, it really depends on what type of qubit you are working with to know the number of states for example the UNSW silicon Q. bit" vs a Diamond-neutron-valency or a SSD NMR Phosphorus - silicon vs Liquid NMR of the same.