Is there any R package to obtain a pairwise distance list if my input file is a distance matrix For eg, if my input is a data.frame like this:
A1 B1 C1 D1
A1 0 0.85 0.45 0.96
B1 0 0.85 0.56
C1 0 0.45
D1 0
I want the output as:
A1 B1 0.85
A1 C1 0.45
A1 D1 0.96
B1 C1 0.85
B1 D1 0.56
C1 D1 0.45
I found a question to do the opposite function using package 'reshape' but could not tweak it to get what I wanted.
A couple of other options:
Generate some data
D <- dist(cbind(runif(4), runif(4)), diag=TRUE, upper=TRUE) # generate dummy data
m <- as.matrix(D) # coerce dist object to a matrix
dimnames(m) <- dimnames(m) <- list(LETTERS[1:4], LETTERS[1:4])
Assuming you just want the distances for pairs defined by the upper triangle of the distance matrix, you can do:
xy <- t(combn(colnames(m), 2))
data.frame(xy, dist=m[xy])
# X1 X2 dist
# 1 A B 0.3157942
# 2 A C 0.5022090
# 3 A D 0.3139995
# 4 B C 0.1865181
# 5 B D 0.6297772
# 6 C D 0.8162084
Alternatively, if you want distances for all pairs (in both directions):
data.frame(col=colnames(m)[col(m)], row=rownames(m)[row(m)], dist=c(m))
# col row dist
# 1 A A 0.0000000
# 2 A B 0.3157942
# 3 A C 0.5022090
# 4 A D 0.3139995
# 5 B A 0.3157942
# 6 B B 0.0000000
# 7 B C 0.1865181
# 8 B D 0.6297772
# 9 C A 0.5022090
# 10 C B 0.1865181
# 11 C C 0.0000000
# 12 C D 0.8162084
# 13 D A 0.3139995
# 14 D B 0.6297772
# 15 D C 0.8162084
# 16 D D 0.0000000
or the following, which excludes any NA
distances, but doesn't keep the column/row names (though this would be easy to rectify since we have the column/row indices):
data.frame(which(!is.na(m), arr.ind=TRUE, useNames=FALSE), dist=c(m))
If you have a data.frame
you could do something like:
df <- structure(list(A1 = c(0, 0, 0, 0), B1 = c(0.85, 0, 0, 0), C1 = c(0.45,
0.85, 0, 0), D1 = c(0.96, 0.56, 0.45, 0)), .Names = c("A1", "B1",
"C1", "D1"), row.names = c(NA, -4L), class = "data.frame")
data.frame( t(combn(names(df),2)), dist=t(df)[lower.tri(df)] )
X1 X2 dist
1 A1 B1 0.85
2 A1 C1 0.45
3 A1 D1 0.96
4 B1 C1 0.85
5 B1 D1 0.56
6 C1 D1 0.45
Another approach if you have it as a matrix
with row+col-names is to use reshape2
directly:
mat <- structure(c(0, 0, 0, 0, 0.85, 0, 0, 0, 0.45, 0.85, 0, 0, 0.96,
0.56, 0.45, 0), .Dim = c(4L, 4L), .Dimnames = list(c("A1", "B1",
"C1", "D1"), c("A1", "B1", "C1", "D1")))
library(reshape2)
subset(melt(mat), value!=0)
Var1 Var2 value
5 A1 B1 0.85
9 A1 C1 0.45
10 B1 C1 0.85
13 A1 D1 0.96
14 B1 D1 0.56
15 C1 D1 0.45
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With