I have the following DataFrame:
daysago line_race rating rw wrating line_date 2007-03-31 62 11 56 1.000000 56.000000 2007-03-10 83 11 67 1.000000 67.000000 2007-02-10 111 9 66 1.000000 66.000000 2007-01-13 139 10 83 0.880678 73.096278 2006-12-23 160 10 88 0.793033 69.786942 2006-11-09 204 9 52 0.636655 33.106077 2006-10-22 222 8 66 0.581946 38.408408 2006-09-29 245 9 70 0.518825 36.317752 2006-09-16 258 11 68 0.486226 33.063381 2006-08-30 275 8 72 0.446667 32.160051 2006-02-11 475 5 65 0.164591 10.698423 2006-01-13 504 0 70 0.142409 9.968634 2006-01-02 515 0 64 0.134800 8.627219 2005-12-06 542 0 70 0.117803 8.246238 2005-11-29 549 0 70 0.113758 7.963072 2005-11-22 556 0 -1 0.109852 -0.109852 2005-11-01 577 0 -1 0.098919 -0.098919 2005-10-20 589 0 -1 0.093168 -0.093168 2005-09-27 612 0 -1 0.083063 -0.083063 2005-09-07 632 0 -1 0.075171 -0.075171 2005-06-12 719 0 69 0.048690 3.359623 2005-05-29 733 0 -1 0.045404 -0.045404 2005-05-02 760 0 -1 0.039679 -0.039679 2005-04-02 790 0 -1 0.034160 -0.034160 2005-03-13 810 0 -1 0.030915 -0.030915 2004-11-09 934 0 -1 0.016647 -0.016647
I need to remove the rows where line_race
is equal to 0
. What's the most efficient way to do this?
Use pandas. DataFrame. drop() method to delete/remove rows with condition(s).
One of the fastest ways to delete rows that contain a specific value or fulfill a given condition is to filter these. Once you have the filtered data, you can delete all these rows (while the remaining rows remain intact).
To drop rows based on certain conditions, select the index of the rows which pass the specific condition and pass that index to the drop() method. In this code, (df['Unit_Price'] >400) & (df['Unit_Price'] < 600) is the condition to drop the rows.
If I'm understanding correctly, it should be as simple as:
df = df[df.line_race != 0]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With