Related to a previous question is there any way to convert a list of named elements where some names are duplicated into a data table where NA values actually show up in the data table in the order that they appear in the list?
For Example: The list
testlist <- list("Blue", "405", "Truck", "400", "Car", "White", "500", "Truck")
testnames <- c("Color", "HP", "Type", "HP", "Type", "Color", "HP", "Type")
names(testlist) <- testnames
$Color
[1] "Blue"
$HP
[1] "405"
$Type
[1] "Truck"
$HP
[1] "400"
$Type
[1] "Car"
$Color
[1] "White"
$HP
[1] "500"
$Type
[1] "Truck"
Can be changed into a data table using:
dcast(setDT(melt(testlist))[, N:=1:.N, L1], N~L1, value.var='value')
But output is this:
N Color HP Type
1 1 Blue 405 Truck
2 2 White 400 Car
3 3 <NA> 500 Truck
When I want:
N Color HP Type
1 1 Blue 405 Truck
2 2 <NA> 400 Car
3 3 White 500 Truck
Does anyone have a suggestion for how to tackle this problem? I appreciate the help.
One approach is to preallocate a table with the correct number of rows and the correct number, names, and types of columns, and then fill it in by index-assigning the cells covered by the original list.
cns <- c('Color','HP','Type');
lcis <- match(names(testlist),cns);
lris <- c(1L,cumsum(diff(lcis)<=0L)+1L);
df <- as.data.frame(testlist[match(1:length(cns),lcis)],stringsAsFactors=F)[0,];
df[max(lris),] <- NA;
df;
## Color HP Type
## 1 <NA> <NA> <NA>
## 2 <NA> <NA> <NA>
## 3 <NA> <NA> <NA>
for (ci in 1:length(cns)) { m <- lcis==ci; df[lris[m],ci] <- do.call(c,testlist[m]); };
df;
## Color HP Type
## 1 Blue 405 Truck
## 2 <NA> 400 Car
## 3 White 500 Truck
In my solution I was careful to handle each column separately, which provides the potential benefit that if different columns in the output table (corresponding to different subsets of components in the input list) have different data types, then those data types will be preserved in the final table. This is why I opted for a for
loop for the index-assignment. This is of course not necessary for your exact input list, which has only character types, but I thought it was a worthy goal anyway.
cns
The column names in the output table.lcis
The column indexes each input list component will have in the output table. This is computed by simply matching the names of the input list components against cns
.lris
The row indexes each input list component will have in the output table. The computation of this variable is somewhat interesting and central to the solution. Since column representation in the input list is incomplete (IOW there can be "missing columns" in the input list), but you consider the input list components to be ordered with respect to their row-wise occurrence in the output table, we can't use regular indexing (such as taking every three components as a row), and we also can't use any single column name as a marker of each row, because any column can be missing in any row. From my thinking, the only correct approach is to identify when a lower-index (or equal-index, actually) column occurs immediately after a higher-index (or equal-index) column in the input list, and take those as row breaks. Hence, we can take diff(lcis)<=0L
to get a logical vector representing row breaks, take the cumsum()
and add 1 to get the row indexes, and we also must manually prepend 1 to complete the vector.ci
The column index in the output table. Used during the for
loop to iterate over each output column.m
Computed for each ci
within the for
loop. A logical vector representing which of the input list components belong to the current column ci
. Used to index both lris
(to pull out the row indexes to assign), and the input list itself (to pull out the actual values to assign).I grabbed your real data from dropbox and stored it as testlist
. Below are the results of my investigations.
First, I examined the unique component names in the order they occur, taking them as cns
:
## first reasonable assumption about cns
cns <- unique(names(testlist));
cns;
## [1] "Status" "Make" "Model"
## [4] "Kilometres" "Stock Number" "Engine"
## [7] "Number of Hours" "Front axle" "Rear axle"
## [10] "Suspension" "Wheelbase" "Transmission"
## [13] "Price" "Style/Trim" "Brakes"
## [16] "Mfg Exterior Colour" "Tires" "Engine (HP)"
## [19] "Exterior Colour"
From which we can compute a new tentative lcis
:
## examine lcis for ordering
lcis <- match(names(testlist),cns);
lcis;
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12
## [26] 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11
## [51] 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10
## [76] 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9
## [101] 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8
## [126] 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7
## [151] 8 9 10 11 12 13 1 2 3 4 14 13 1 2 3 4 5 6 7 8 9 10 11 12 13
## [176] 1 2 3 4 5 15 16 6 8 9 10 17 11 18 12 19 13 1 2 3 4 5 15 16 6
## [201] 8 9 10 17 11 18 12 19 13
Looking carefully at the above vector, we can see that it begins with many regular repetitions of 1:13
. In fact, only towards the end of the vector does it become irregular, where we see 14 followed by 13, and 16 followed by 6, 10-11-12 interleaved with 17-18-19, etc.
But one important observation we can make here is that the vector seems to consist of groups delineated by 1 and 13. In other words, for all extents that seem to have some regularity (even if there is also some irregularity), they seem to begin with 1 and end with 13. This observation agrees with your comment regarding disorder in the middle of vehicle data. Let's call this the 1/13 assumption.
We can get a clearer view of the groups by splitting on this 1/13 boundary:
## recognizing 1/13 consistency, split on it to see how each (possible) row looks under this assumption
split(lcis,cumsum(lcis==1L));
## $`1`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`2`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`3`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`4`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`5`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`6`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`7`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`8`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`9`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`10`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`11`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`12`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`13`
## [1] 1 2 3 4 14 13
##
## $`14`
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## $`15`
## [1] 1 2 3 4 5 15 16 6 8 9 10 17 11 18 12 19 13
##
## $`16`
## [1] 1 2 3 4 5 15 16 6 8 9 10 17 11 18 12 19 13
Now, if you look very carefully at the above groups, you can figure out that it is possible to reorder cns
in such a way that all groups will be ordered ascending. They will not be contiguous, but contiguity is not required for the solution I devised for the original problem; all that is necessary is ascending order.
For instance, we need to order column 14 before 13, and we need to order columns 15 and 16 before 6, 8, 9, etc.:
## recognizing the possibility of reordering to achieve perfect within-row ascending order, reorder cns to cns2
cns2 <- cns[c(1,2,3,4,14,5,15,16,6,7,8,9,10,17,11,18,12,19,13)];
cns2;
## [1] "Status" "Make" "Model"
## [4] "Kilometres" "Style/Trim" "Stock Number"
## [7] "Brakes" "Mfg Exterior Colour" "Engine"
## [10] "Number of Hours" "Front axle" "Rear axle"
## [13] "Suspension" "Tires" "Wheelbase"
## [16] "Engine (HP)" "Transmission" "Exterior Colour"
## [19] "Price"
Now we can recalculate lcis
, which I will now call lcis2
, and demonstrate the new group orders:
## calculate lcis2 from cns2, and prove that we've successfully ordered each individual row under the 1/13 (now 1/19) break assumption
lcis2 <- match(names(testlist),cns2);
split(lcis2,cumsum(lcis2==1L));
## $`1`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`2`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`3`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`4`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`5`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`6`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`7`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`8`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`9`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`10`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`11`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`12`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`13`
## [1] 1 2 3 4 5 19
##
## $`14`
## [1] 1 2 3 4 6 9 10 11 12 13 15 17 19
##
## $`15`
## [1] 1 2 3 4 6 7 8 9 11 12 13 14 15 16 17 18 19
##
## $`16`
## [1] 1 2 3 4 6 7 8 9 11 12 13 14 15 16 17 18 19
And finally, we can run the entire solution, being careful to use the 2-suffixed variable names now:
## now we can apply the preallocate/fill-in solution using cns2 and lcis2
## will use lris2 and df2 just to be consistent
lris2 <- c(1L,cumsum(diff(lcis2)<=0L)+1L);
df2 <- as.data.frame(testlist[match(1:length(cns2),lcis2)],stringsAsFactors=F)[0,];
df2[max(lris2),] <- NA;
df2;
## Status Make Model Kilometres Style.Trim Stock.Number Brakes Mfg.Exterior.Colour Engine Number.of.Hours Front.axle Rear.axle Suspension Tires Wheelbase Engine..HP. Transmission Exterior.Colour Price
## 1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 2 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 3 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 4 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 5 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 6 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 7 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 8 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 9 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 10 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 11 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 12 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 13 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 14 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 15 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 16 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
for (ci in 1:length(cns2)) { m <- lcis2==ci; df2[lris2[m],ci] <- do.call(c,testlist[m]); };
df2;
## Status Make Model Kilometres Style.Trim Stock.Number Brakes Mfg.Exterior.Colour Engine Number.of.Hours Front.axle Rear.axle Suspension Tires Wheelbase Engine..HP. Transmission Exterior.Colour Price
## 1 New Peterbilt 367 Tri-Drive c/w 58'' Sleeper 3,360 km <NA> 12949 <NA> <NA> Cummins ISX15 (550 hp) 44 Dana Spicer D2000 (20,000lb) Dana T69-170 (wide track) t Peterbilt Air-Trak (66,000lb) <NA> 267'' <NA> RTLO18918B Fuller (18 speed) <NA> $217,770
## 2 New Kenworth T800 T/A Tractor 82,230 km <NA> 10720 <NA> <NA> Cummins ISX15 (550hp) 2,712 Dana Spicer D2000 (20,000 lb) Dana D46-170HPW (46,000 lb) ta Neway ADZ252 (52,000lb) Air <NA> 244'' <NA> Fuller 18 spd main AT1202 2 sp <NA> $199,500
## 3 New Kenworth T800 Tandem Tractor w/ 38'' Sleeper 98,521 km <NA> 10722 <NA> <NA> Cummins ISX15 (550hp) 2,790 Dana Spicer D2000 (20,000 lb) Dana D46-170HPW (46,000 lb) ta Neway ADZ252 (52,000lb) Air <NA> 244'' <NA> Fuller 18 spd main AT1202 2 sp <NA> $199,500
## 4 Used Kenworth W900 Tri-Drive Sleeper Truck Tractor 170,422 km <NA> 13227 <NA> <NA> Cummins ISX15 (600 hp) 4,925 Meritor FL941 (20,000 lb) Meritor RZ-166 (69,000 lb) Kenworth AG690 (69,000lb) Air <NA> 259'' <NA> 18 speed main & 4 speed au <NA> $197,750
## 5 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,367 km <NA> 12180 <NA> <NA> Cummins ISX15 (550hp) 38 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $193,300
## 6 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,421 km <NA> 12179 <NA> <NA> Cummins ISX15 (550hp) 46 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $193,300
## 7 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 2,157 km <NA> 12181 <NA> <NA> Cummins ISX15 (550hp) 64 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $189,880
## 8 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,444 km <NA> 12954 <NA> <NA> Cummins ISX15 (550hp) 45 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $189,880
## 9 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,427 km <NA> 12955 <NA> <NA> Cummins ISX15 (550hp) 43 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $189,880
## 10 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,982 km <NA> 12182 <NA> <NA> Cummins ISX15 (550hp) 78 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $189,880
## 11 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 23,293 km <NA> 12953 <NA> <NA> Cummins ISX15 (550hp) 394 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $189,880
## 12 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 27,215 km <NA> 12509 <NA> <NA> Cummins ISX15 (550hp) 458 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $186,600
## 13 Used Volvo VNL64T 780-730 72,000 km VNL64T780-730 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> $185,000
## 14 New Peterbilt 367 T/A Wet Kit Tractor c/w 58'' Sleeper 60,657 km <NA> 10838 <NA> <NA> Cummins ISX15 (550hp) 1,822 Dana Spicer E14621 (14,600 lb Dana D46-170HP (46,000lb) tand Peterbilt Air-Trak (46,000lb) <NA> 244'' <NA> RTLO18918B Fuller (18 speed) <NA> $171,800
## 15 Used International ProStar +122 36,236 km <NA> 463555 Air White Cummins ISX <NA> Arvin Meritor 13200 lb Arvin Meritor 40000 lb Int'l IROS 11R22.5 228 in 450 Eaton Fuller D/O (18 spd) White $168,750
## 16 Used International ProStar +122 33,000 km <NA> 463543 Air White Cummins ISX <NA> Arvin Meritor 13200 lb Arvin Meritor 46000 lb Int'l IROS 11R/22.5 236 in 475 Eaton Fuller D/O (18 spd) White $165,900
Now, I realized that it might be preferable to move away entirely from the "ascending-order assumption" (let's call it) to the 1/13 assumption, which we can do very simply by changing the lris
calculation. This will absolve us of the need to reorder cns
from the order we receive from the unique()
call.
Below I demonstrate this, reverting back to the unsuffixed variable names, which will be useful, as will be seen in a moment:
## change lris calculation to depend directly on 1/13 assumption; don't bother reordering
cns <- unique(names(testlist));
lcis <- match(names(testlist),cns);
lris <- c(1L,cumsum(lcis[-1]==1L)+1L);
df <- as.data.frame(testlist[match(1:length(cns),lcis)],stringsAsFactors=F)[0,];
df[max(lris),] <- NA;
for (ci in 1:length(cns)) { m <- lcis==ci; df[lris[m],ci] <- do.call(c,testlist[m]); };
df;
## Status Make Model Kilometres Stock.Number Engine Number.of.Hours Front.axle Rear.axle Suspension Wheelbase Transmission Price Style.Trim Brakes Mfg.Exterior.Colour Tires Engine..HP. Exterior.Colour
## 1 New Peterbilt 367 Tri-Drive c/w 58'' Sleeper 3,360 km 12949 Cummins ISX15 (550 hp) 44 Dana Spicer D2000 (20,000lb) Dana T69-170 (wide track) t Peterbilt Air-Trak (66,000lb) 267'' RTLO18918B Fuller (18 speed) $217,770 <NA> <NA> <NA> <NA> <NA> <NA>
## 2 New Kenworth T800 T/A Tractor 82,230 km 10720 Cummins ISX15 (550hp) 2,712 Dana Spicer D2000 (20,000 lb) Dana D46-170HPW (46,000 lb) ta Neway ADZ252 (52,000lb) Air 244'' Fuller 18 spd main AT1202 2 sp $199,500 <NA> <NA> <NA> <NA> <NA> <NA>
## 3 New Kenworth T800 Tandem Tractor w/ 38'' Sleeper 98,521 km 10722 Cummins ISX15 (550hp) 2,790 Dana Spicer D2000 (20,000 lb) Dana D46-170HPW (46,000 lb) ta Neway ADZ252 (52,000lb) Air 244'' Fuller 18 spd main AT1202 2 sp $199,500 <NA> <NA> <NA> <NA> <NA> <NA>
## 4 Used Kenworth W900 Tri-Drive Sleeper Truck Tractor 170,422 km 13227 Cummins ISX15 (600 hp) 4,925 Meritor FL941 (20,000 lb) Meritor RZ-166 (69,000 lb) Kenworth AG690 (69,000lb) Air 259'' 18 speed main & 4 speed au $197,750 <NA> <NA> <NA> <NA> <NA> <NA>
## 5 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,367 km 12180 Cummins ISX15 (550hp) 38 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $193,300 <NA> <NA> <NA> <NA> <NA> <NA>
## 6 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,421 km 12179 Cummins ISX15 (550hp) 46 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $193,300 <NA> <NA> <NA> <NA> <NA> <NA>
## 7 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 2,157 km 12181 Cummins ISX15 (550hp) 64 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $189,880 <NA> <NA> <NA> <NA> <NA> <NA>
## 8 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,444 km 12954 Cummins ISX15 (550hp) 45 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $189,880 <NA> <NA> <NA> <NA> <NA> <NA>
## 9 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,427 km 12955 Cummins ISX15 (550hp) 43 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $189,880 <NA> <NA> <NA> <NA> <NA> <NA>
## 10 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 3,982 km 12182 Cummins ISX15 (550hp) 78 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $189,880 <NA> <NA> <NA> <NA> <NA> <NA>
## 11 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 23,293 km 12953 Cummins ISX15 (550hp) 394 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $189,880 <NA> <NA> <NA> <NA> <NA> <NA>
## 12 New Peterbilt 367 T/A Wet-Kit Tractor c/w 58'' Sleeper 27,215 km 12509 Cummins ISX15 (550hp) 458 Dana Spicer E14621 (14,600 lb Dana D46-170 (46,000lb) ta Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $186,600 <NA> <NA> <NA> <NA> <NA> <NA>
## 13 Used Volvo VNL64T 780-730 72,000 km <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> $185,000 VNL64T780-730 <NA> <NA> <NA> <NA> <NA>
## 14 New Peterbilt 367 T/A Wet Kit Tractor c/w 58'' Sleeper 60,657 km 10838 Cummins ISX15 (550hp) 1,822 Dana Spicer E14621 (14,600 lb Dana D46-170HP (46,000lb) tand Peterbilt Air-Trak (46,000lb) 244'' RTLO18918B Fuller (18 speed) $171,800 <NA> <NA> <NA> <NA> <NA> <NA>
## 15 Used International ProStar +122 36,236 km 463555 Cummins ISX <NA> Arvin Meritor 13200 lb Arvin Meritor 40000 lb Int'l IROS 228 in Eaton Fuller D/O (18 spd) $168,750 <NA> Air White 11R22.5 450 White
## 16 Used International ProStar +122 33,000 km 463543 Cummins ISX <NA> Arvin Meritor 13200 lb Arvin Meritor 46000 lb Int'l IROS 236 in Eaton Fuller D/O (18 spd) $165,900 <NA> Air White 11R/22.5 475 White
As you can see, the column order of df
is different from df2
, but we can prove the data is identical with the following:
## prove df2 and df are identical, ignoring the column order difference
identical(df,df2[names(df)]);
## [1] TRUE
Best solution I could come up with
library(data.table)
listnames <- names(testlist)
# "Color" "HP" "Type" "HP" "Type" "Color" "HP" "Type"
unames <- unique(listnames)
# "Color" "HP" "Type"
a <- setNames(1:length(unames), unames)
# Color HP Type
# 1 2 3
d <- unname(a[listnames])
# [1] 1 2 3 2 3 1 2 3
splitted_list <- split(testlist, cumsum(shift(d, fill=0)>d))
# results in testlist splitted by increasing sequences in d
# (1,2,3), (2,3), (1, 2, 3)
# You can impose a different splitting condition here, for instance,
# if each entry begins with 1, then cumsum(d==1) is adequate
# and the last step is pretty much self explanatory
rbindlist(lapply(splitted_list, data.frame), fill=TRUE)
# Color HP Type
# 1: Blue 405 Truck
# 2: NA 400 Car
# 3: White 500 Truck
Hope it addresses your problem.
When applied to your test data from Dropbox with split condition cumsum(d==1)
, it resulted in
structure(list(Status = structure(c(1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L), .Label = c("New", "Used"
), class = "factor"), Make = structure(c(1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 4L, 4L), .Label = c("Peterbilt",
"Kenworth", "Volvo", "International"), class = "factor"), Model = structure(c(1L,
2L, 3L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 8L, 8L), .Label = c("367 Tri-Drive c/w 58'' Sleeper",
"T800 T/A Tractor", "T800 Tandem Tractor w/ 38'' Sleeper", "W900 Tri-Drive Sleeper Truck Tractor",
"367 T/A Wet-Kit Tractor c/w 58'' Sleeper", "VNL64T 780-730",
"367 T/A Wet Kit Tractor c/w 58'' Sleeper", "ProStar +122"
), class = "factor"), Kilometres = structure(1:16, .Label = c("3,360 km",
"82,230 km", "98,521 km", "170,422 km", "3,367 km", "3,421 km",
"2,157 km", "3,444 km", "3,427 km", "3,982 km", "23,293 km",
"27,215 km", "72,000 km", "60,657 km", "36,236 km", "33,000 km"
), class = "factor"), Stock.Number = structure(c(1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, NA, 13L, 14L, 15L), .Label = c("12949",
"10720", "10722", "13227", "12180", "12179", "12181", "12954",
"12955", "12182", "12953", "12509", "10838", "463555", "463543"
), class = "factor"), Engine = structure(c(1L, 2L, 2L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, NA, 4L, 5L, 5L), .Label = c("Cummins ISX15 (550 hp)",
"Cummins ISX15 (550hp)", "Cummins ISX15 (600 hp)", "Cummins ISX15 (550hp)",
"Cummins ISX"), class = "factor"), Number.of.Hours = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, NA, 13L, NA, NA
), .Label = c("44", "2,712", "2,790", "4,925", "38", "46", "64",
"45", "43", "78", "394", "458", "1,822"), class = "factor"),
Front.axle = structure(c(1L, 2L, 2L, 3L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, NA, 4L, 5L, 5L), .Label = c("Dana Spicer D2000 (20,000lb)",
"Dana Spicer D2000 (20,000 lb)", "Meritor FL941 (20,000 lb)",
"Dana Spicer E14621 (14,600 lb", "Arvin Meritor 13200 lb"
), class = "factor"), Rear.axle = structure(c(1L, 2L, 2L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, NA, 5L, 6L, 7L), .Label = c("Dana T69-170 (wide track) t",
"Dana D46-170HPW (46,000 lb) ta", "Meritor RZ-166 (69,000 lb)",
"Dana D46-170 (46,000lb) ta", "Dana D46-170HP (46,000lb) tand",
"Arvin Meritor 40000 lb", "Arvin Meritor 46000 lb"), class = "factor"),
Suspension = structure(c(1L, 2L, 2L, 3L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, NA, 4L, 5L, 5L), .Label = c("Peterbilt Air-Trak (66,000lb)",
"Neway ADZ252 (52,000lb) Air", "Kenworth AG690 (69,000lb) Air",
"Peterbilt Air-Trak (46,000lb)", "Int'l IROS"), class = "factor"),
Wheelbase = structure(c(1L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, NA, 2L, 4L, 5L), .Label = c("267''", "244''",
"259''", "228 in", "236 in"), class = "factor"), Transmission = structure(c(1L,
2L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 4L, 4L
), .Label = c("RTLO18918B Fuller (18 speed)", "Fuller 18 spd main AT1202 2 sp",
"18 speed main & 4 speed au", "Eaton Fuller D/O (18 spd)"
), class = "factor"), Price = structure(c(1L, 2L, 2L, 3L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 8L, 9L, 10L), .Label = c("$217,770",
"$199,500", "$197,750", "$193,300", "$189,880", "$186,600",
"$185,000", "$171,800", "$168,750", "$165,900"), class = "factor"),
Style.Trim = structure(c(NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 1L, NA, NA, NA), .Label = "VNL64T780-730", class = "factor"),
Brakes = structure(c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 1L, 1L), .Label = "Air", class = "factor"),
Mfg.Exterior.Colour = structure(c(NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 1L, 1L), .Label = "White", class = "factor"),
Tires = structure(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 1L, 2L), .Label = c("11R22.5", "11R/22.5"
), class = "factor"), Engine..HP. = structure(c(NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 2L), .Label = c("450",
"475"), class = "factor"), Exterior.Colour = structure(c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 1L
), .Label = "White", class = "factor")), .Names = c("Status",
"Make", "Model", "Kilometres", "Stock.Number", "Engine", "Number.of.Hours",
"Front.axle", "Rear.axle", "Suspension", "Wheelbase", "Transmission",
"Price", "Style.Trim", "Brakes", "Mfg.Exterior.Colour", "Tires",
"Engine..HP.", "Exterior.Colour"), row.names = c(NA, -16L), class = "data.frame")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With