how can I write a short script that creates a new data frame that reports the following descriptive statistics for each column of continuous data for the survey below: mean, standard deviation, median, minimum value, maximum value, sample size?
Distance Age Height Coning
1 21.4 18 3.3 Yes
2 13.9 17 3.4 Yes
3 23.9 16 2.9 Yes
4 8.7 18 3.6 No
5 241.8 6 0.7 No
6 44.5 17 1.3 Yes
7 30.0 15 2.5 Yes
8 32.3 16 1.8 Yes
9 31.4 17 5.0 No
10 32.8 13 1.6 No
11 53.3 12 2.0 No
12 54.3 6 0.9 No
13 96.3 11 2.6 No
14 133.6 4 0.6 No
15 32.1 15 2.3 No
16 57.9 12 2.4 Yes
17 30.8 17 1.8 No
18 59.9 7 0.8 No
19 42.7 15 2.0 Yes
20 20.6 18 1.7 Yes
21 62.0 8 1.3 No
22 53.1 7 1.6 No
23 28.9 16 2.2 Yes
24 177.4 5 1.1 No
25 24.8 14 1.5 Yes
26 75.3 14 2.3 Yes
27 51.6 7 1.4 No
28 36.1 9 1.1 No
29 116.1 6 1.1 No
30 28.1 16 2.5 Yes
31 8.7 19 2.2 Yes
32 105.1 6 0.8 No
33 46.0 15 3.0 Yes
34 102.6 7 1.2 No
35 15.8 15 2.2 No
36 60.0 7 1.3 No
37 96.4 13 2.6 No
38 24.2 14 1.7 No
39 14.5 15 2.4 No
40 36.6 14 1.5 No
41 65.7 5 0.6 No
42 116.3 7 1.6 No
43 113.6 8 1.0 No
44 16.7 15 4.3 Yes
45 66.0 7 1.0 No
46 60.7 7 1.0 No
47 90.6 7 0.7 No
48 91.3 7 1.3 No
49 14.4 18 3.1 Yes
50 72.8 14 3.0 Yes
Descriptive statistics in R (Method 1):summary statistic is computed using summary() function in R. summary() function is automatically applied to each column. The format of the result depends on the data type of the column. If the column is a numeric variable, mean, median, min, max and quartiles are returned.
Summarize Function in R Programming. As its name implies, the summarize function reduces a data frame to a summary of just one vector or value. Many times, these summaries are calculated by grouping observations using a factor or categorical variables first.
R provides a wide range of functions for obtaining summary statistics. One method of obtaining descriptive statistics is to use the sapply( ) function with a specified summary statistic. Possible functions used in sapply include mean, sd, var, min, max, median, range, and quantile.
summary() function in R Language is a generic function used to produce result summaries of the results of various model fitting functions.
You can write your own function to get such a summary into a data.frame:
# Defining the function
my.summary <- function(x, na.rm=TRUE){
result <- c(Mean=mean(x, na.rm=na.rm),
SD=sd(x, na.rm=na.rm),
Median=median(x, na.rm=na.rm),
Min=min(x, na.rm=na.rm),
Max=max(x, na.rm=na.rm),
N=length(x))
}
# identifying numeric columns
ind <- sapply(df, is.numeric)
# applying the function to numeric columns only
sapply(df[, ind], my.summary)
Distance Age Height
Mean 58.67200 11.840000 1.9160000
SD 45.48137 4.604168 0.9796626
Median 48.80000 13.500000 1.7000000
Min 8.70000 4.000000 0.6000000
Max 241.80000 19.000000 5.0000000
N 50.00000 50.000000 50.0000000
Or you can use the built-in function basicStats
from fBasics package for a more detailed summary:
> library(fBasics)
> basicStats(df[, ind])
Distance Age Height
nobs 50.000000 50.000000 50.000000
NAs 0.000000 0.000000 0.000000
Minimum 8.700000 4.000000 0.600000
Maximum 241.800000 19.000000 5.000000
1. Quartile 28.300000 7.000000 1.125000
3. Quartile 74.675000 15.750000 2.475000
Mean 58.672000 11.840000 1.916000
Median 48.800000 13.500000 1.700000
Sum 2933.600000 592.000000 95.800000
SE Mean 6.432037 0.651128 0.138545
LCL Mean 45.746337 10.531510 1.637583
UCL Mean 71.597663 13.148490 2.194417
Variance 2068.555118 21.198367 0.959739
Stdev 45.481371 4.604168 0.979663
Skewness 1.711028 -0.158853 0.905415
Kurtosis 3.753948 -1.574527 0.578684
The following use of do.call
, rbind
and sapply
provides a summary for each column that has the class 'numeric'. You can write your own statistics function if you need different statistics than those of summary
(see the answer of @Jilber).
mtcars$carb = as.factor(mtcars$carb) # Forcing one column to a factor
do.call('rbind', sapply(mtcars, function(x) if(is.numeric(x)) summary(x)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
mpg 10.400 15.420 19.200 20.0900 22.80 33.900
cyl 4.000 4.000 6.000 6.1880 8.00 8.000
disp 71.100 120.800 196.300 230.7000 326.00 472.000
hp 52.000 96.500 123.000 146.7000 180.00 335.000
drat 2.760 3.080 3.695 3.5970 3.92 4.930
wt 1.513 2.581 3.325 3.2170 3.61 5.424
qsec 14.500 16.890 17.710 17.8500 18.90 22.900
vs 0.000 0.000 0.000 0.4375 1.00 1.000
am 0.000 0.000 0.000 0.4062 1.00 1.000
gear 3.000 3.000 4.000 3.6880 4.00 5.000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With