Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

data.table operation chaining

Tags:

r

data.table

What is the best way to perform the following kinds of operations:

Let's say I want to find out the index of all rows that have a user_id <0 or even say find the user_id's that have average sales >50.

I first generate the data table with the index and then filter with what is essentially another data.table. Is there a more efficient way?

In this example, I want to have the index 2 i.e the index of the row where user_id is <0

x<-data.table(user_id=c(1,-1,2,3),iqlevel=c(40,50,60,70))
x[,I:=.I,][user_id<0,I,]
like image 596
Pritish Kakodkar Avatar asked Aug 07 '15 11:08

Pritish Kakodkar


2 Answers

Here you go:

dt[,.I[which(user_id<0)] ]

like image 174
nsheff Avatar answered Sep 30 '22 14:09

nsheff


I would have another answer:

x[user_id<0, which=TRUE]

And run some timing using my helper tool:

library(data.table) # v1.9.5
# devtools::install_github("jangorecki/dtq")
# drat::addRepo("jangorecki"); install.packages("dtq")
library(dtq)

op <- data.table(user_id=c(1,-1,2,3),iqlevel=c(40,50,60,70))
sheffien <- copy(op)
jan <- copy(op)

r1 <- op[,I:=.I,][user_id<0,I,]
r2 <- sheffien[,.I[which(user_id<0)] ]
r3 <- jan[user_id<0, which=TRUE]

identical(r1,r2)
# [1] TRUE
identical(r2,r3)
# [1] TRUE

dtcalls <- dtl(print=TRUE) # collect logs
print(dtcalls)
#    seq dtq_id dtq_seq      src                           query           timestamp         env     elapsed in_rows out_rows
# 1:   1      1       1       op               [j = `:=`(I, .I)] 2015-08-07 14:01:10 R_GlobalEnv 0.001718847       4        4
# 2:   2      1       2       op        [i = user_id < 0, j = I] 2015-08-07 14:01:10 R_GlobalEnv 0.008719112       4       NA
# 3:   3      2       1 sheffien    [j = .I[which(user_id < 0)]] 2015-08-07 14:01:10 R_GlobalEnv 0.000662418       4       NA
# 4:   4      3       1      jan [i = user_id < 0, which = TRUE] 2015-08-07 14:01:10 R_GlobalEnv 0.000281067       4       NA

dtcalls[,.(query=paste(query, collapse=""), sec=sum(elapsed)),.(src)]
#         src                                     query         sec
# 1:       op [j = `:=`(I, .I)][i = user_id < 0, j = I] 0.010437959
# 2: sheffien              [j = .I[which(user_id < 0)]] 0.000662418
# 3:      jan           [i = user_id < 0, which = TRUE] 0.000281067

Keep in mind this is just single run on 4 rows data.table, so be sure to validate the speed on your data.

like image 40
jangorecki Avatar answered Sep 30 '22 14:09

jangorecki