Thank you in advance for reading this. I have a function which was working just fine on data.table 1.9.3. But today I updated my data.table package and my function does not work.
Here is my function and working example on data.table 1.9.3:
trait.by <- function(data,traits="",cross.by){
traits = intersect(traits,names(data))
if(length(traits)<1){
#if there is no intersect between names and traits
return( data[, list(N. = .N), by=cross.by])
}else{
return(data[,c( N. = .N,
MEAN = lapply(.SD,function(x){return(round(mean(x,na.rm=T),digits=1))}) ,
SD = lapply(.SD,function(x){return(round(sd (x,na.rm=T),digits=2))}) ,
'NA' = lapply(.SD,function(x){return(sum (is.na(x)))})),
by=cross.by, .SDcols = traits])
}
}
> trait.by(data.table(iris),traits = c("Sepal.Length", "Sepal.Width"),cross.by="Species")
# Species N. MEAN.Sepal.Length MEAN.Sepal.Width SD.Sepal.Length
#1: setosa 50 5.0 3.4 0.35
#2: versicolor 50 5.9 2.8 0.52
#3: virginica 50 6.6 3.0 0.64
# SD.Sepal.Width NA.Sepal.Length NA.Sepal.Width
#1: 0.38 0 0
#2: 0.31 0 0
#3: 0.32 0 0
The point is MEAN.(traits)
, SD.(traits)
and NA.(traits)
are computed for all columns that I give in traits
variable.
When I run this with data.table 1.9.4 I receive the following error:
> trait.by(data.table(iris),traits = c("Sepal.Length", "Sepal.Width"),cross.by="Species")
#Error in assign("..FUN", eval(fun, SDenv, SDenv), SDenv) :
# cannot change value of locked binding for '..FUN'
Any idea how I should fix this?!
More specifically, you will learn 1) to add a column using base R (i.e., by using the $-operator and brackets, 2) add a column using the add_column() function (i.e., from tibble), 3) add multiple columns, and 4) to add columns from one dataframe to another.
data. table(DT) is TRUE. To better description, I put parts of my original code here. So you may understand where goes wrong.
You create DataColumn objects within a table by using the DataColumn constructor, or by calling the Add method of the Columns property of the table, which is a DataColumnCollection. The Add method accepts optional ColumnName, DataType, and Expression arguments and creates a new DataColumn as a member of the collection.
Update: This has been fixed now in 1.9.5 in commit 1680. From NEWS:
- Fixed a bug in the internal optimisation of
j-expression
with more than onelapply(.SD, function(..) ..)
as illustrated here on SO. Closes #985. Thanks to @jadaliha for the report and to @BrodieG for the debugging on SO.
Now this works as expected:
data[,
c(
MEAN = lapply(.SD,function(x){return(round(mean(x,na.rm=T),digits=1))}),
SD = lapply(.SD,function(x){return(round(sd (x,na.rm=T),digits=2))})
), by=cross.by, .SDcols = traits]
This looks like a bug that manifests as a result of multiple uses of lapply(.SD, FUN)
in one data.table
call in combination with c(
. You can work around it by replacing c(
with .(
.
traits <- c("Sepal.Length", "Sepal.Width")
cross.by <- "Species"
data <- data.table(iris)
data[,
c(
MEAN = lapply(.SD,function(x){return(round(mean(x,na.rm=T),digits=1))})
),
by=cross.by, .SDcols = traits
]
Works.
data[,
c(
SD = lapply(.SD,function(x){return(round(sd (x,na.rm=T),digits=2))})
),
by=cross.by, .SDcols = traits
]
Works.
data[,
c(
MEAN = lapply(.SD,function(x){return(round(mean(x,na.rm=T),digits=1))}),
SD = lapply(.SD,function(x){return(round(sd (x,na.rm=T),digits=2))})
),
by=cross.by, .SDcols = traits
]
Doesn't work
data[,
.(
MEAN = lapply(.SD,function(x){return(round(mean(x,na.rm=T),digits=1))}),
SD = lapply(.SD,function(x){return(round(sd (x,na.rm=T),digits=2))})
),
by=cross.by, .SDcols = traits
]
Works.
Like this ? The output format changed slightly. But the result is all there.
trait.by <- function(data,traits="",cross.by){
traits = intersect(traits,names(data))
if(length(traits)<1){
#if there is no intersect between names and traits
return(data[, list(N. = .N), by=cross.by])
}else{
# ** Changes: use list instead of c and don't think we need return here.
# and add new col_Nam with refernce to comments below
return(data[, list(N. = .N,
MEAN = lapply(.SD,function(x){round(mean(x,na.rm=T),digits=1)}) ,
SD = lapply(.SD,function(x){round(sd (x,na.rm=T),digits=2)}) ,
'NA' = lapply(.SD,function(x){sum (is.na(x))}),
col_Nam = names(.SD)),
by=cross.by, .SDcols = traits])
}
}
trait.by(data.table(iris),traits = c("Sepal.Length", "Sepal.Width"),cross.by="Species")
# result
Species N. MEAN SD NA col_Nam
1: setosa 50 5 0.35 0 Sepal.Length
2: setosa 50 3.4 0.38 0 Sepal.Width
3: versicolor 50 5.9 0.52 0 Sepal.Length
4: versicolor 50 2.8 0.31 0 Sepal.Width
5: virginica 50 6.6 0.64 0 Sepal.Length
6: virginica 50 3 0.32 0 Sepal.Width
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With