For the moment, at least, this is an exercise in learning for me, so the actual functions or their complexity is not the issue. Suppose I write a function whose argument list includes some input variables and a function name, passed as a string. This function then calculates some variables internally and "decides" how to feed them to the function name I've passed in.
For nonprimitive functions, I can do (for this example, assume non of my funcname
functions have any arguments other than at most (x,y,z)
. If they did, I'd have to write some code to search for matching names(formals(get(funcname)))
so as not to delete the other arguments):
foo <- function (a,b,funcname) {
x <- 2*a
y <- a+3*b
z <- -b
formals(get(funcname)) <- list(x=x, y=y, z=z)
bar <- get(funcname)()
return(bar)
}
And the nice thing is, even if the function funcname
will execute without error even if it doesn't use x
, y
or z
(so long as there are no other args that don't have defaults) .
The problem with "primitive" functions is I don't know any way to find or modify their formals. Other than writing a wrapper, e.g. foosin <-function(x) sin(x)
, is there a way to set up my foo
function to work with both primitive and nonprimitive function names as input arguments?
formals(args(FUN))
can be used to get the formals of a primitive function.
You could add an if
statement to your existing function.
> formals(sum)
# NULL
> foo2 <- function(x) {
if(is.primitive(x)) formals(args(x)) else formals(x)
## formals(if(is.primitive(x)) args(x) else x) is another option
}
> foo2(sum)
# $...
#
#
# $na.rm
# [1] FALSE
#
> foo2(with)
# $data
#
#
# $expr
#
#
# $...
Building on Richard S' response, I ended up doing the following. Posted just in case anyone else ever tries do things as weird as I do.
EDIT: I think more type-checking needs to be done. It's possible that coleqn
could be
the name of an object, in which case get(coleqn)
will return some data. Probably I need
to add a if(is.function(rab))
right after the if(!is.null(rab))
. (Of course, given that I wrote the function for my own needs, if I was stupid enough to pass an object, I deserve what I get :-) ).
# "coleqn" is the input argument, which is a string that could be either a function
# name or an expression.
rab<-tryCatch(get(coleqn),error=function(x) {} )
#oops, rab can easily be neither NULL nor a closure. Damn.
if(!is.null(rab)) {
# I believe this means it must be a function
# thanks to Richard Scriven of SO for this fix to handle primitives
# we are not allowed to redefine primitive's formals.
qq <- list(x=x,y=y,z=z)
# matchup the actual formals names
# by building a list of valid arguments to pass to do.call
argk<-NULL
argnames<-names(formals(args(coleqn)))
for(j in 1:length(argnames) )
argk[j]<-which(names(qq)==argnames[1] )
arglist<-list()
for(j in 1:length(qq) )
if(!is.na(argk[j])) arglist[[names(qq)[j]]]<-qq[[j]]
colvar<- do.call(coleqn,arglist)
} else {
# the input is just an expression (string), not a function
colvar <- eval(parse(text=coleqn))
}
The result is an object generated either by the expression or the function just created, using variables internal to the main function (which is not shown in this snippet)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With