Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

CRTP to avoid dynamic polymorphism

There are two ways.

The first one is by specifying the interface statically for the structure of types:

template <class Derived>
struct base {
  void foo() {
    static_cast<Derived *>(this)->foo();
  };
};

struct my_type : base<my_type> {
  void foo(); // required to compile.
};

struct your_type : base<your_type> {
  void foo(); // required to compile.
};

The second one is by avoiding the use of the reference-to-base or pointer-to-base idiom and do the wiring at compile-time. Using the above definition, you can have template functions that look like these:

template <class T> // T is deduced at compile-time
void bar(base<T> & obj) {
  obj.foo(); // will do static dispatch
}

struct not_derived_from_base { }; // notice, not derived from base

// ...
my_type my_instance;
your_type your_instance;
not_derived_from_base invalid_instance;
bar(my_instance); // will call my_instance.foo()
bar(your_instance); // will call your_instance.foo()
bar(invalid_instance); // compile error, cannot deduce correct overload

So combining the structure/interface definition and the compile-time type deduction in your functions allows you to do static dispatch instead of dynamic dispatch. This is the essence of static polymorphism.


I've been looking for decent discussions of CRTP myself. Todd Veldhuizen's Techniques for Scientific C++ is a great resource for this (1.3) and many other advanced techniques like expression templates.

Also, I found that you could read most of Coplien's original C++ Gems article at Google books. Maybe that's still the case.


I had to look up CRTP. Having done that, however, I found some stuff about Static Polymorphism. I suspect that this is the answer to your question.

It turns out that ATL uses this pattern quite extensively.