I have a 2D bitmap-like array of let's say 500*500 values. I'm trying to create a linear gradient on the array, so the resulting bitmap would look something like this (in grayscale):
(source: showandtell-graphics.com)
The input would be the array to fill, two points (like the starting and ending point for the Gradient tool in Photoshop/GIMP) and the range of values which would be used.
My current best result is this:
alt text http://img222.imageshack.us/img222/1733/gradientfe3.png
...which is nowhere near what I would like to achieve. It looks more like a radial gradient.
What is the simplest way to create such a gradient? I'm going to implement it in C++, but I would like some general algorithm.
This is really a math question, so it might be debatable whether it really "belongs" on Stack Overflow, but anyway: you need to project the coordinates of each point in the image onto the axis of your gradient and use that coordinate to determine the color.
Mathematically, what I mean is:
A = (x2 - x1)
and B = (y2 - y1)
C1 = A * x1 + B * y1
for the starting point and C2 = A * x2 + B * y2
for the ending point (C2
should be larger than C1
)C = A * x + B * y
If C <= C1
, use the starting color; if C >= C2
, use the ending color; otherwise, use a weighted average:
(start_color * (C2 - C) + end_color * (C - C1))/(C2 - C1)
I did some quick tests to check that this basically worked.
In your example image, it looks like you have a radial gradient. Here's my impromtu math explanation for the steps you'll need. Sorry for the math, the other answers are better in terms of implementation.
| c | | Vect:____.______________ | |
I'll just post my solution.
int ColourAt( int x, int y )
{
float imageX = (float)x / (float)BUFFER_WIDTH;
float imageY = (float)y / (float)BUFFER_WIDTH;
float xS = xStart / (float)BUFFER_WIDTH;
float yS = yStart / (float)BUFFER_WIDTH;
float xE = xEnd / (float)BUFFER_WIDTH;
float yE = yEnd / (float)BUFFER_WIDTH;
float xD = xE - xS;
float yD = yE - yS;
float mod = 1.0f / ( xD * xD + yD * yD );
float gradPos = ( ( imageX - xS ) * xD + ( imageY - yS ) * yD ) * mod;
float mag = gradPos > 0 ? gradPos < 1.0f ? gradPos : 1.0f : 0.0f;
int colour = (int)( 255 * mag );
colour |= ( colour << 16 ) + ( colour << 8 );
return colour;
}
For speed ups, cache the derived "direction" values (hint: premultiply by the mag).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With