I have been fiddling with the Kaggle West-Nile Virus competition data as a means to practice fitting a spatio-temporal GAM. The first few rows of the (somewhat processed from the original CSV) weather
data are below (plus the first 20 rows a dput()
ed output at the end of the question).
> head(weather)
Station Date Tmax Tmin Tavg Depart DewPoint WetBulb Heat Cool Sunrise
1 1 2007-05-01 83 50 67 14 51 56 0 2 448
2 2 2007-05-01 84 52 68 NA 51 57 0 3 NA
3 1 2007-05-02 59 42 51 -3 42 47 14 0 447
4 2 2007-05-02 60 43 52 NA 42 47 13 0 NA
5 1 2007-05-03 66 46 56 2 40 48 9 0 446
6 2 2007-05-03 67 48 58 NA 40 50 7 0 NA
Sunset CodeSum Depth Water1 SnowFall PrecipTotal StnPressure SeaLevel
1 1849 <NA> 0 NA 0 0 29.10 29.82
2 NA <NA> NA NA NA 0 29.18 29.82
3 1850 BR 0 NA 0 0 29.38 30.09
4 NA BR HZ NA NA NA 0 29.44 30.08
5 1851 <NA> 0 NA 0 0 29.39 30.12
6 NA HZ NA NA NA 0 29.46 30.12
ResultSpeed ResultDir AvgSpeed
1 1.7 27 9.2
2 2.7 25 9.6
3 13.0 4 13.4
4 13.3 2 13.4
5 11.7 7 11.9
6 12.9 6 13.2
Note the CodeSum
variable. Each element of CodeSum
is an observation on significant weather phenomena. Some observations are missing (NA
), some have no data but are not missing, some have a single type of significant weather, and others have several significant weather observations for the same day.
What I want is to create a new data frame with n new binary variables (n would be the number of unique values in CodeSum
) with an NA
if missing, a 1
is weather indicator observed, and a 0
if not observed.
I initially tried tidyr::separate()
but this either needed all indicators to be present for all observations or it treated them in order; the first indicator regardless of what that indicator was, was always assigned to the first binary variable.
I do have a solution:
expandLevs <- function(x, set) {
m <- matrix(0, ncol = length(set), nrow = 1L)
colnames(m) <- set
nax <- is.na(x)
m[, nax] <- NA
if (!all(nax)) {
idx <- x[!nax]
m[, idx] <- 1
}
m
}
cs <- with(weather, strsplit(as.character(CodeSum), " "))
levs <- with(weather,
sort(unique(unlist(strsplit(levels(CodeSum), " ")))))
cs <- lapply(cs, expandLevs, set = levs)
cs <- do.call("rbind", cs)
cs <- data.frame(cs, check.names = FALSE)
cs <- lapply(cs, factor, levels = c(0,1))
cs <- data.frame(cs, check.names = FALSE)
Which gives
> cs
BR HZ RA
1 <NA> <NA> <NA>
2 <NA> <NA> <NA>
3 1 0 0
4 1 1 0
5 <NA> <NA> <NA>
6 0 1 0
7 0 0 1
8 <NA> <NA> <NA>
9 <NA> <NA> <NA>
10 <NA> <NA> <NA>
11 <NA> <NA> <NA>
12 <NA> <NA> <NA>
13 0 0 1
14 <NA> <NA> <NA>
15 1 0 0
16 0 1 0
17 1 1 0
18 1 1 0
19 1 0 0
20 1 1 0
for the 20 rows of data in weather
(below).
But this seems clunky at best.
Am I overlooking a simpler way to create the binary variables?
Expected output also included as dput()ed
code at the end.
weather <- structure(list(Station = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L), Date = structure(c(13634,
13634, 13635, 13635, 13636, 13636, 13637, 13637, 13638, 13638,
13639, 13639, 13640, 13640, 13641, 13641, 13642, 13642, 13643,
13643), class = "Date"), Tmax = c(83L, 84L, 59L, 60L, 66L, 67L,
66L, 78L, 66L, 66L, 68L, 68L, 83L, 84L, 82L, 80L, 77L, 76L, 84L,
83L), Tmin = c(50L, 52L, 42L, 43L, 46L, 48L, 49L, 51L, 53L, 54L,
49L, 52L, 47L, 50L, 54L, 60L, 61L, 63L, 56L, 59L), Tavg = c(67,
68, 51, 52, 56, 58, 58, NA, 60, 60, 59, 60, 65, 67, 68, 70, 69,
70, 70, 71), Depart = c(14, NA, -3, NA, 2, NA, 4, NA, 5, NA,
4, NA, 10, NA, 12, NA, 13, NA, 14, NA), DewPoint = c(51L, 51L,
42L, 42L, 40L, 40L, 41L, 42L, 38L, 39L, 30L, 30L, 41L, 39L, 58L,
57L, 59L, 60L, 52L, 52L), WetBulb = c(56, 57, 47, 47, 48, 50,
50, 50, 49, 50, 46, 46, 54, 53, 62, 63, 63, 63, 60, 61), Heat = c(0,
0, 14, 13, 9, 7, 7, NA, 5, 5, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0),
Cool = c(2, 3, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 2, 3, 5,
4, 5, 5, 6), Sunrise = c(448, NA, 447, NA, 446, NA, 444,
NA, 443, NA, 442, NA, 441, NA, 439, NA, 438, NA, 437, NA),
Sunset = c(1849, NA, 1850, NA, 1851, NA, 1852, NA, 1853,
NA, 1855, NA, 1856, NA, 1857, NA, 1858, NA, 1859, NA), CodeSum = structure(c(NA,
NA, 2L, 3L, NA, 19L, 23L, NA, NA, NA, NA, NA, 23L, NA, 2L,
19L, 3L, 3L, 2L, 3L), .Label = c("BCFG BR", "BR", "BR HZ",
"BR HZ FU", "BR HZ VCFG", "BR VCTS", "DZ", "DZ BR", "DZ BR HZ",
"FG BR HZ", "FG+", "FG+ BCFG BR", "FG+ BR", "FG+ BR HZ",
"FG+ FG BR", "FG+ FG BR HZ", "FG+ MIFG BR", "FU", "HZ", "HZ FU",
"HZ VCTS", "MIFG BCFG BR", "RA", "RA BCFG BR", "RA BR", "RA BR FU",
"RA BR HZ", "RA BR HZ FU", "RA BR HZ VCFG", "RA BR HZ VCTS",
"RA BR SQ", "RA BR VCFG", "RA BR VCTS", "RA DZ", "RA DZ BR",
"RA DZ BR HZ", "RA DZ FG+ BCFG BR", "RA DZ FG+ BR", "RA DZ FG+ BR HZ",
"RA DZ FG+ FG BR", "RA DZ SN", "RA FG BR", "RA FG+ BR", "RA FG+ MIFG BR",
"RA HZ", "RA SN", "RA SN BR", "RA VCTS", "TS", "TS BR", "TS BR HZ",
"TS HZ", "TS RA", "TS RA BR", "TS RA BR HZ", "TS RA FG+ FG BR",
"TS TSRA", "TS TSRA BR", "TS TSRA BR HZ", "TS TSRA GR RA BR",
"TS TSRA HZ", "TS TSRA RA", "TS TSRA RA BR", "TS TSRA RA BR HZ",
"TS TSRA RA BR HZ VCTS", "TS TSRA RA BR VCTS", "TS TSRA RA FG BR",
"TS TSRA RA FG BR HZ", "TS TSRA RA HZ", "TS TSRA RA VCTS",
"TS TSRA VCFG", "TSRA", "TSRA BR", "TSRA BR HZ", "TSRA BR HZ FU",
"TSRA BR HZ VCTS", "TSRA BR SQ", "TSRA DZ BR HZ", "TSRA DZ FG+ FG BR HZ",
"TSRA FG+ BR", "TSRA FG+ BR HZ", "TSRA HZ", "TSRA RA", "TSRA RA BR",
"TSRA RA BR HZ", "TSRA RA BR HZ VCTS", "TSRA RA BR VCTS",
"TSRA RA DZ BR", "TSRA RA DZ BR HZ", "TSRA RA FG BR", "TSRA RA FG+ BR",
"TSRA RA FG+ FG BR", "TSRA RA FG+ FG BR HZ", "TSRA RA HZ",
"TSRA RA HZ FU", "TSRA RA VCTS", "VCTS"), class = "factor"),
Depth = c(0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA,
0, NA, 0, NA, 0, NA), Water1 = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), SnowFall = c(0,
NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA,
0, NA), PrecipTotal = c(0, 0, 0, 0, 0, 0, 0.005, 0, 0.005,
0.005, 0, 0, 0.005, 0, 0, 0.005, 0.13, 0.02, 0, 0), StnPressure = c(29.1,
29.18, 29.38, 29.44, 29.39, 29.46, 29.31, 29.36, 29.4, 29.46,
29.57, 29.62, 29.38, 29.44, 29.29, 29.36, 29.21, 29.28, 29.2,
29.26), SeaLevel = c(29.82, 29.82, 30.09, 30.08, 30.12, 30.12,
30.05, 30.04, 30.1, 30.09, 30.29, 30.28, 30.12, 30.12, 30.03,
30.02, 29.94, 29.93, 29.92, 29.91), ResultSpeed = c(1.7,
2.7, 13, 13.3, 11.7, 12.9, 10.4, 10.1, 11.7, 11.2, 14.4,
13.8, 8.6, 8.5, 2.7, 2.5, 3.9, 3.9, 0.7, 2), ResultDir = c(27L,
25L, 4L, 2L, 7L, 6L, 8L, 7L, 7L, 7L, 11L, 10L, 18L, 17L,
11L, 8L, 9L, 7L, 17L, 9L), AvgSpeed = c(9.2, 9.6, 13.4, 13.4,
11.9, 13.2, 10.8, 10.4, 12, 11.5, 15, 14.5, 10.5, 9.9, 5.8,
5.4, 6.2, 5.9, 4.1, 3.9)), .Names = c("Station", "Date",
"Tmax", "Tmin", "Tavg", "Depart", "DewPoint", "WetBulb", "Heat",
"Cool", "Sunrise", "Sunset", "CodeSum", "Depth", "Water1", "SnowFall",
"PrecipTotal", "StnPressure", "SeaLevel", "ResultSpeed", "ResultDir",
"AvgSpeed"), row.names = c(NA, 20L), class = "data.frame")
output <- structure(list(BR = structure(c(NA, NA, 2L, 2L, NA, 1L, 1L, NA,
NA, NA, NA, NA, 1L, NA, 2L, 1L, 2L, 2L, 2L, 2L), .Label = c("0",
"1"), class = "factor"), HZ = structure(c(NA, NA, 1L, 2L, NA,
2L, 1L, NA, NA, NA, NA, NA, 1L, NA, 1L, 2L, 2L, 2L, 1L, 2L), .Label = c("0",
"1"), class = "factor"), RA = structure(c(NA, NA, 1L, 1L, NA,
1L, 2L, NA, NA, NA, NA, NA, 2L, NA, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0",
"1"), class = "factor")), .Names = c("BR", "HZ", "RA"), row.names = c(NA,
-20L), class = "data.frame")
Try
library(qdapTools)
res <- mtabulate(strsplit(as.character(weather$CodeSum), ' ')) *
NA^is.na(weather$CodeSum)
res
BR HZ RA
1 NA NA NA
2 NA NA NA
3 1 0 0
4 1 1 0
5 NA NA NA
6 0 1 0
7 0 0 1
8 NA NA NA
9 NA NA NA
10 NA NA NA
11 NA NA NA
12 NA NA NA
13 0 0 1
14 NA NA NA
15 1 0 0
16 0 1 0
17 1 1 0
18 1 1 0
19 1 0 0
20 1 1 0
I would create cs
and lev
, as you did, but I would create the matrix by pre-allocating a matrix of NA
and filling in the non-NA rows in a loop.
cs <- with(weather, strsplit(as.character(CodeSum), " "))
levs <- with(weather, unique(unlist(strsplit(levels(CodeSum), " "))))
# pre-allocate the integer matrix to store the indicator values
ind <- matrix(NA_integer_, length(cs), length(levs), , list(NULL,levs))
# loop over each row
for (i in seq_along(cs)) {
if (is.na(cs[[i]][1])) # skip this row if cs[[i]] is NA
next
ind[i,] <- 0 # not NA, so set all columns to 0
ind[i,cs[[i]]] <- 1 # set columns in cs[[i]] to 1
}
ind
should match your output
, with the exception that output
is a data.frame of factors and ind
is an integer matrix.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With