I'd like to create a variable containing the value of a variable in the previous year within a group.
id date value
1 1 1992 4.1
2 1 NA 4.5
3 1 1991 3.3
4 1 1990 5.3
5 1 1994 3.0
6 2 1992 3.2
7 2 1991 5.2
value_lagged
should be missing when the previous year is missing within a group - either because it is the first date within a group (as in row 4, 7), or because there are year gaps in the data (as in row 5). Also, value_lagged
should be missing when the current time is missing (as in row 2).
This gives:
id date value value_lagged
1 1 1992 4.1 3.3
2 1 NA 4.5 NA
3 1 1991 3.3 5.3
4 1 1990 5.3 NA
5 1 1994 3.0 NA
6 2 1992 3.2 5.2
7 2 1991 5.2 NA
For now, in R, I use the data.table
package
DT = data.table(id = c(1,1,1,1,1,2,2),
date = c(1992,NA,1991,1990,1994,1992,1991),
value = c(4.1,4.5,3.3,5.3,3.0,3.2,5.2)
)
setkey(DT, id, date)
DT[, value_lagged := DT[J(id, date-1), value], ]
DT[is.na(date), value_lagged := NA, ]
It's fast but it seems somewhat error prone to me. I'd like to know if there are better alternatives using data.table
, dplyr
, or any other package. Thanks a lot!
In Stata
, one would do:
tsset id date
gen value_lagged=L.value
I'd probably tackle this using a join:
library(dplyr)
df <- data.frame(
id = c(1, 1, 1, 1, 1, 2, 2),
date = c(1992, NA, 1991, 1990, 1994, 1992, 1991),
value = c(4.1, 4.5, 3.3, 5.3, 3.0, 3.2, 5.2)
)
last_year <- df %>%
filter(!is.na(date)) %>%
mutate(date = date + 1, lagged_value = value, value = NULL)
df %>%
left_join(last_year)
#> Joining by: c("id", "date")
#> id date value lagged_value
#> 1 1 1992 4.1 3.3
#> 2 1 NA 4.5 NA
#> 3 1 1991 3.3 5.3
#> 4 1 1990 5.3 NA
#> 5 1 1994 3.0 NA
#> 6 2 1992 3.2 5.2
#> 7 2 1991 5.2 NA
Using 1.9.5
, where joins don't need keys to be set, this can be done as follows:
require(data.table) # v1.9.5+
DT[!is.na(date), value_lagged :=
.SD[.(id = id, date = date - 1), value, on = c("id", "date")]]
# id date value value_lagged
# 1: 1 1992 4.1 3.3
# 2: 1 NA 4.5 NA
# 3: 1 1991 3.3 5.3
# 4: 1 1990 5.3 NA
# 5: 1 1994 3.0 NA
# 6: 2 1992 3.2 5.2
# 7: 2 1991 5.2 NA
It's a variation of your idea. The trick is to use is.na()
directly in i
and use .SD
in j
instead of DT
. I've used on=
syntax, but the same idea can of course be done by setting keys as well. .
Using a function tlag
within groups defined by id
library(dplyr)
tlag <- function(x, n = 1L, time) {
index <- match(time - n, time, incomparables = NA)
x[index]
}
df %>% group_by(id) %>% mutate(value_lagged = tlag(value, 1, time = date))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With