So I have a list as follows:
aa = ['aa1', 'aa2', 'aa3', 'aa4', 'aa5']
bb = ['bb1', 'bb2', 'bb3', 'bb4']
cc = ['cc1', 'cc2', 'cc3']
Which is then created into a nested list:
nest = [aa, bb, cc]
I want to create a dataframe as follows:
aa   bb   cc
aa1  bb1  cc1
aa2  bb2  cc2
aa3  bb3  cc3
aa4  bb4  nan
aa5  nan  nan
I've tried:
pd.DataFrame(nest, columns=['aa', 'bb', cc'])
But results is such that, each list is being written as a row (as opposed to a column)
The zip_longest function from itertools does this:
>>> import itertools, pandas
>>> pandas.DataFrame((_ for _ in itertools.zip_longest(*nest)), columns=['aa', 'bb', 'cc'])
    aa    bb    cc
0  aa1   bb1   cc1
1  aa2   bb2   cc2
2  aa3   bb3   cc3
3  aa4   bb4  None
4  aa5  None  None
If you have an older version of pandas you may need to wrap zip_longest in a list constructor. On older Python you may need to call izip_longest instead of zip_longest.
Option 1
pd.DataFrame(nest, ['aa', 'bb', 'cc']).T
    aa    bb    cc
0  aa1   bb1   cc1
1  aa2   bb2   cc2
2  aa3   bb3   cc3
3  aa4   bb4  None
4  aa5  None  None
Option 2
Homebrew zip_longest  
f = lambda x, n: x[n] if n < len(x) else None
n, m = max(map(len, nest)), len(nest)
pd.DataFrame(
    [[f(j, i) for j in nest] for i in range(n)],
    columns=['aa', 'bb', 'cc']
)
    aa    bb    cc
0  aa1   bb1   cc1
1  aa2   bb2   cc2
2  aa3   bb3   cc3
3  aa4   bb4  None
4  aa5  None  None
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With