I have a fairly large csv, looking like this:
+---------+---------+
| Column1 | Column2 |
+---------+---------+
| 1 | 93644 |
| 2 | 63246 |
| 3 | 47790 |
| 3 | 39644 |
| 3 | 32585 |
| 1 | 19593 |
| 1 | 12707 |
| 2 | 53480 |
+---------+---------+
My intent is to
For example, I want to end up with multiple files that look like:
+---+-------+----------------+
| 1 | 19593 | NewColumnValue |
| 1 | 93644 | NewColumnValue |
| 1 | 12707 | NewColumnValue |
+---+-------+----------------+
+---+-------+-----------------+
| 2 | 63246 | NewColumnValue |
| 2 | 53480 | NewColumnValue |
+---+-------+-----------------+
+---+-------+-----------------+
| 3 | 47790 | NewColumnValue |
| 3 | 39644 | NewColumnValue |
| 3 | 32585 | NewColumnValue |
+---+-------+-----------------+
I have managed to do this using separate .py files:
Step1
# -*- coding: utf-8 -*-
import pandas as pd
df = pd.read_csv('source.csv')
df = df.sort_values('Column1')
df['NewColumn'] = 'NewColumnValue'
df.to_csv('ready.csv', index=False, header=False)
Step2
import csv
from itertools import groupby
for key, rows in groupby(csv.reader(open("ready.csv")),
lambda row: row[0]):
with open("%s.csv" % key, "w") as output:
for row in rows:
output.write(",".join(row) + "\n")
But I'd really like to learn how to accomplish everything in a single .py file. I tried this:
# -*- coding: utf-8 -*-
#This processes a large CSV file.
#It will dd a new column, populate the new column with a uniform piece of data for each row, sort the CSV, and remove headers
#Then it will split the single large CSV into multiple CSVs based on the value in column 0
import pandas as pd
import csv
from itertools import groupby
df = pd.read_csv('source.csv')
df = df.sort_values('Column1')
df['NewColumn'] = 'NewColumnValue'
for key, rows in groupby(csv.reader((df)),
lambda row: row[0]):
with open("%s.csv" % key, "w") as output:
for row in rows:
output.write(",".join(row) + "\n")
but instead of working as intended, it's giving me multiple CSVs named after each column header.
Is that happening because I removed the header row when I used separate .py files and I'm not doing it here? I'm not really certain what operation I need to do when splitting the files to remove the header.
Why not just groupby Column1
and save each group?
df = df.sort_values('Column1').assign(NewColumn='NewColumnValue')
print(df)
Column1 Column2 NewColumn
0 1 93644 NewColumnValue
5 1 19593 NewColumnValue
6 1 12707 NewColumnValue
1 2 63246 NewColumnValue
7 2 53480 NewColumnValue
2 3 47790 NewColumnValue
3 3 39644 NewColumnValue
4 3 32585 NewColumnValue
for i, g in df.groupby('Column1'):
g.to_csv('{}.csv'.format(i), header=False, index_label=False)
Thanks to Unatiel for the improvement. header=False
will not write headers and index_label=False
will not write an index column.
This creates 3 files:
1.csv
2.csv
3.csv
Each having data corresponding to each Column1
group.
You don't need to switch to itertools
for the filtering, pandas
has all of the necessary functionality built-in.
# -*- coding: utf-8 -*-
import pandas as pd
df = pd.read_csv('source.csv')
df = df.sort_values('Column1') # Sorting isn't needed
df['NewColumn'] = 'NewColumnValue'
for key in df['Column1'].unique(): # For each value in Column1
# These two steps can be combined into a single call
# I'll separate for clarity:
# 1) filter the dataframe on the unique value
dw = df[df['Column1']==key]
# 2) write the resulting dataframe without headers
dw.to_csv("%s.csv" % key, header=False)
pandas.DataFrame
supports a method to write it's data as a csv to_csv()
. You have no need for csv
module in this case.
import pandas as pd
df = pd.read_csv('source.csv')
df = df.sort_values('Column1').set_index('Column1')
df['NewColumn'] = 'NewColumnValue'
for key in df.index.unique():
df.loc[key].to_csv('%d.csv' % int(key), header=False)
for key df.index.unique():
will loop over every unique value in the index. In your example, it will loop over (1, 2 , 3)
. header=False
willmake sure the header isn't written to the output file.
And to explain why you get the wrong output in your example, try print(list(df))
. This should output all the columns in df. This is why for key, rows in csv.reader((df)):
iterates over the columns in df.
Actually, you should get 1 csv for every column in your dataframe, and their contents are likely something like ,[NAME_OF_COLUMN]
or maybe ,<itertools.... object at 0x.....>
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With