I am training a XGBoostClassifier for my training set.
My training features are in the shape of (45001, 10338) which is a numpy array and my training labels are in the shape of (45001,) [I have 1161 unique labels so I have done a label encoding for the labels] which is also a numpy array.
From the documentation, it clearly says that I can create DMatrix from numpy array. So I am using the above mentioned training features and labels as numpy arrays straightaway. But I am getting the following error
---------------------------------------------------------------------------
XGBoostError Traceback (most recent call last)
<ipython-input-30-3de36245534e> in <module>()
13 scale_pos_weight=1,
14 seed=27)
---> 15 modelfit(xgb1, train_x, train_y)
<ipython-input-27-9d215eac135e> in modelfit(alg, train_data_features, train_labels, useTrainCV, cv_folds, early_stopping_rounds)
6 xgtrain = xgb.DMatrix(train_data_features, label=train_labels)
7 cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
----> 8 metrics='auc',early_stopping_rounds=early_stopping_rounds)
9 alg.set_params(n_estimators=cvresult.shape[0])
10
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/training.py in cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, callbacks)
399 for fold in cvfolds:
400 fold.update(i, obj)
--> 401 res = aggcv([f.eval(i, feval) for f in cvfolds])
402
403 for key, mean, std in res:
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/training.py in <listcomp>(.0)
399 for fold in cvfolds:
400 fold.update(i, obj)
--> 401 res = aggcv([f.eval(i, feval) for f in cvfolds])
402
403 for key, mean, std in res:
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/training.py in eval(self, iteration, feval)
221 def eval(self, iteration, feval):
222 """"Evaluate the CVPack for one iteration."""
--> 223 return self.bst.eval_set(self.watchlist, iteration, feval)
224
225
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/core.py in eval_set(self, evals, iteration, feval)
865 _check_call(_LIB.XGBoosterEvalOneIter(self.handle, iteration,
866 dmats, evnames, len(evals),
--> 867 ctypes.byref(msg)))
868 return msg.value
869 else:
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/core.py in _check_call(ret)
125 """
126 if ret != 0:
--> 127 raise XGBoostError(_LIB.XGBGetLastError())
128
129
XGBoostError: b'[19:12:58] src/metric/rank_metric.cc:89: Check failed: (preds.size()) == (info.labels.size()) label size predict size not match'
Please find my model Code below:
def modelfit(alg, train_data_features, train_labels,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgb_param['num_class'] = 1161
xgtrain = xgb.DMatrix(train_data_features, label=train_labels)
cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
metrics='auc',early_stopping_rounds=early_stopping_rounds)
alg.set_params(n_estimators=cvresult.shape[0])
#Fit the algorithm on the data
alg.fit(train_data_features, train_labels, eval_metric='auc')
#Predict training set:
dtrain_predictions = alg.predict(train_data_features)
dtrain_predprob = alg.predict_proba(train_data_features)[:,1]
#Print model report:
print("\nModel Report")
print("Accuracy : %.4g" % metrics.accuracy_score(train_labels, dtrain_predictions))
Where am I going wrong in the above place ?
My classifier as follows :
xgb1 = xgb.XGBClassifier(
learning_rate =0.1,
n_estimators=50,
max_depth=5,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective='multi:softmax',
nthread=4,
scale_pos_weight=1,
seed=27)
EDIT - 2 After changing evaluation metric,
---------------------------------------------------------------------------
XGBoostError Traceback (most recent call last)
<ipython-input-9-30c62a886c2e> in <module>()
13 scale_pos_weight=1,
14 seed=27)
---> 15 modelfit(xgb1, train_x_trail, train_y_trail)
<ipython-input-8-9d215eac135e> in modelfit(alg, train_data_features, train_labels, useTrainCV, cv_folds, early_stopping_rounds)
6 xgtrain = xgb.DMatrix(train_data_features, label=train_labels)
7 cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
----> 8 metrics='auc',early_stopping_rounds=early_stopping_rounds)
9 alg.set_params(n_estimators=cvresult.shape[0])
10
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/training.py in cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, callbacks)
398 evaluation_result_list=None))
399 for fold in cvfolds:
--> 400 fold.update(i, obj)
401 res = aggcv([f.eval(i, feval) for f in cvfolds])
402
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/training.py in update(self, iteration, fobj)
217 def update(self, iteration, fobj):
218 """"Update the boosters for one iteration"""
--> 219 self.bst.update(self.dtrain, iteration, fobj)
220
221 def eval(self, iteration, feval):
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/core.py in update(self, dtrain, iteration, fobj)
804
805 if fobj is None:
--> 806 _check_call(_LIB.XGBoosterUpdateOneIter(self.handle, iteration, dtrain.handle))
807 else:
808 pred = self.predict(dtrain)
/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/xgboost/core.py in _check_call(ret)
125 """
126 if ret != 0:
--> 127 raise XGBoostError(_LIB.XGBGetLastError())
128
129
XGBoostError: b'[03:43:03] src/objective/multiclass_obj.cc:42: Check failed: (info.labels.size()) != (0) label set cannot be empty'
The original error that you get is because this metric was not designed for multi-class classification (see here).
You could use scikit learn wrapper of xgboost to overcome this issue. I modified your code with this wrapper, to produce similar function. I am not sure why are you doing gridsearch though, as you are not enumerating over parameters. Instead, you are using the parameters you specified in xgb1
. Here is the modified code:
import xgboost as xgb
import sklearn
import numpy as np
from sklearn.model_selection import GridSearchCV
def modelfit(alg, train_data_features, train_labels,useTrainCV=True, cv_folds=5):
if useTrainCV:
params=alg.get_xgb_params()
xgb_param=dict([(key,[params[key]]) for key in params])
boost = xgb.sklearn.XGBClassifier()
cvresult = GridSearchCV(boost,xgb_param,cv=cv_folds)
cvresult.fit(X,y)
alg=cvresult.best_estimator_
#Fit the algorithm on the data
alg.fit(train_data_features, train_labels)
#Predict training set:
dtrain_predictions = alg.predict(train_data_features)
dtrain_predprob = alg.predict_proba(train_data_features)[:,1]
#Print model report:
print("\nModel Report")
print("Accuracy : %.4g" % sklearn.metrics.accuracy_score(train_labels, dtrain_predictions))
xgb1 = xgb.sklearn.XGBClassifier(
learning_rate =0.1,
n_estimators=50,
max_depth=5,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective='multi:softmax',
nthread=4,
scale_pos_weight=1,
seed=27)
X=np.random.normal(size=(200,30))
y=np.random.randint(0,5,200)
modelfit(xgb1, X, y)
The output that I get is
Model Report
Accuracy : 1
Note that I used much smaller size for the data. With the size that you mentioned, the algorithm may be very slow.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With