I'm trying to group IDs by consecutive dates.
ID Date
abc 2017-01-07
abc 2017-01-08
abc 2017-01-09
abc 2017-12-09
xyz 2017-01-05
xyz 2017-01-06
xyz 2017-04-15
xyz 2017-04-16
Need to return:
ID Count
abc 3
abc 1
xyz 2
xyz 2
I've tried:
d = {'ID': ['abc', 'abc', 'abc', 'abc', 'xyz', 'xyz', 'xyz', 'xyz'], 'Date': ['2017-01-07','2017-01-08', '2017-01-09', '2017-12-09', '2017-01-05', '2017-01-06', '2017-04-15', '2017-04-16']}
df = pd.DataFrame(data=d)
df['Date'] = pd.to_datetime(df['Date'])
today = pd.to_datetime('2018-10-23')
x = df.sort_values('Date', ascending=0)
g = x.groupby(['ID'])
x[(today - x['Date']).dt.days == g.cumcount()].groupby(['ID']).size()
Is there a simple way to do this in order to obtain the counts of all date ranges by ID?
Create a Series
which checks for the difference between Dates within each ID. Check if that's not 1 day, and then groupby the ID
and the cumulative sum of that Series.
import pandas as pd
s = df.groupby('ID').Date.diff().dt.days.ne(1).cumsum()
df.groupby(['ID', s]).size().reset_index(level=1, drop=True)
ID
abc 3
abc 1
xyz 2
xyz 2
dtype: int64
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With