Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How could I detect subtypes in pandas object columns?

Tags:

python

pandas

I have the next DataFrame:

df = pd.DataFrame({'a': [100, 3,4], 'b': [20.1, 2.3,45.3], 'c': [datetime.time(23,52), 30,1.00]})

and I would like to detect subtypes in columns without explicit programming a loop, if possible.

I am looking for the next output:

column a = [int]
column b = [float]
column c = [datetime.time, int, float]
like image 762
Borja Fernández Antelo Avatar asked Aug 13 '18 08:08

Borja Fernández Antelo


2 Answers

You should appreciate that with Pandas you can have 2 broad types of series:

  1. Optimised structures: Usually numeric data, this includes np.datetime64 and bool.
  2. object dtype: Used for series with mixed types or types which cannot be held natively in a NumPy array. The series is structured as a sequence of pointers to arbitrary Python objects and is generally inefficient.

The reason for this preamble is you should only ever need to apply element-wise logic to the second type. Data in the first category is homogeneous by nature.

So you should separate your logic accordingly.

Regular dtypes

Use pd.DataFrame.dtypes:

print(df.dtypes)

a      int64
b    float64
c     object
dtype: object

object dtype

Isolate these series via pd.DataFrame.select_dtypes and then use a dictionary comprehension:

obj_types = {col: set(map(type, df[col])) for col in df.select_dtypes(include=[object])}

print(obj_types)

{'c': {int, datetime.time, float}}

You will need to do a little more work to get the exact format you require, but the above should be your plan of attack.

like image 156
jpp Avatar answered Oct 23 '22 01:10

jpp


You can just use python built-in function map.

column_c = list(map(type,df['c']))
print(column_c)

output:
[datetime.time, int, float]

types = {i: set(map(type, df[i])) for i in df.columns} 
# this will return unique dtypes of all columns in a dict
like image 38
Abhi Avatar answered Oct 23 '22 03:10

Abhi