I would like to replace NA
values with zeros via mutate_if
in dplyr
. The syntax below:
set.seed(1) mtcars[sample(1:dim(mtcars)[1], 5), sample(1:dim(mtcars)[2], 5)] <- NA require(dplyr) mtcars %>% mutate_if(is.na,0) mtcars %>% mutate_if(is.na, funs(. = 0))
Returns error:
Error in
vapply(tbl, p, logical(1), ...)
: values must be length 1, butFUN(X[[1]])
result is length 32
What's the correct syntax for this operation?
Eg mutate_if(data, is. numeric, ...) means to carry out a transformation on all numeric columns in your dataset. If you want to replace all NAs with zeros in numeric columns: data %>% mutate_if(is. numeric, funs(ifelse(is.na(.), 0, .)))
mutate() – adds new variables while retaining old variables to a data frame. transmute() – adds new variables and removes old ones from a data frame. mutate_all() – changes every variable in a data frame simultaneously. mutate_at() – changes certain variables by name.
The "if" in mutate_if
refers to choosing columns, not rows. Eg mutate_if(data, is.numeric, ...)
means to carry out a transformation on all numeric columns in your dataset.
If you want to replace all NAs with zeros in numeric columns:
data %>% mutate_if(is.numeric, funs(ifelse(is.na(.), 0, .)))
I learned this trick from the purrr tutorial, and it also works in dplyr. There are two ways to solve this problem:
First, define custom functions outside the pipe, and use it in mutate_if()
:
any_column_NA <- function(x){ any(is.na(x)) } replace_NA_0 <- function(x){ if_else(is.na(x),0,x) } mtcars %>% mutate_if(any_column_NA,replace_NA_0)
Second, use the combination of ~
,.
or .x
.( .x
can be replaced with .
, but not any other character or symbol):
mtcars %>% mutate_if(~ any(is.na(.x)),~ if_else(is.na(.x),0,.x)) #This also works mtcars %>% mutate_if(~ any(is.na(.)),~ if_else(is.na(.),0,.))
In your case, you can also use mutate_all()
:
mtcars %>% mutate_all(~ if_else(is.na(.x),0,.x))
Using ~
, we can define an anonymous function, while .x
or .
stands for the variable. In mutate_if()
case, .
or .x
is each column.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With