I am to take a csv with 4 columns: brand, price, weight, and type.
The types are orange, apple, pear, plum.
Parameters: I need to select the most possible weight, but by selecting 1 orange, 2 pears, 3 apples, and 1 plum by not exceeding as $20 budget. I cannot repeat brands of the same fruit (like selecting the same brand of apple 3 times, etc).
I can open and read the csv file through Python, but I'm not sure how to create a dictionary or list of tuples from the csv file?
For more clarity, here's an idea of the data.
Brand, Price, Weight, Type
brand1, 6.05, 3.2, orange
brand2, 8.05, 5.2, orange
brand3, 6.54, 4.2, orange
brand1, 6.05, 3.2, pear
brand2, 7.05, 3.6, pear
brand3, 7.45, 3.9, pear
brand1, 5.45, 2.7, apple
brand2, 6.05, 3.2, apple
brand3, 6.43, 3.5, apple
brand4, 7.05, 3.9, apple
brand1, 8.05, 4.2, plum
brand2, 3.05, 2.2, plum
Here's all I have right now:
import csv
test_file = 'testallpos.csv'
csv_file = csv.DictReader(open(test_file, 'rb'), ["brand"], ["price"], ["weight"], ["type"])
You can ponder this:
import csv
def fitem(item):
item=item.strip()
try:
item=float(item)
except ValueError:
pass
return item
with open('/tmp/test.csv', 'r') as csvin:
reader=csv.DictReader(csvin)
data={k.strip():[fitem(v)] for k,v in reader.next().items()}
for line in reader:
for k,v in line.items():
k=k.strip()
data[k].append(fitem(v))
print data
Prints:
{'Price': [6.05, 8.05, 6.54, 6.05, 7.05, 7.45, 5.45, 6.05, 6.43, 7.05, 8.05, 3.05],
'Type': ['orange', 'orange', 'orange', 'pear', 'pear', 'pear', 'apple', 'apple', 'apple', 'apple', 'plum', 'plum'],
'Brand': ['brand1', 'brand2', 'brand3', 'brand1', 'brand2', 'brand3', 'brand1', 'brand2', 'brand3', 'brand4', 'brand1', 'brand2'],
'Weight': [3.2, 5.2, 4.2, 3.2, 3.6, 3.9, 2.7, 3.2, 3.5, 3.9, 4.2, 2.2]}
If you want the csv file literally as tuples by rows:
import csv
with open('/tmp/test.csv') as f:
data=[tuple(line) for line in csv.reader(f)]
print data
# [('Brand', ' Price', ' Weight', ' Type'), ('brand1', ' 6.05', ' 3.2', ' orange'), ('brand2', ' 8.05', ' 5.2', ' orange'), ('brand3', ' 6.54', ' 4.2', ' orange'), ('brand1', ' 6.05', ' 3.2', ' pear'), ('brand2', ' 7.05', ' 3.6', ' pear'), ('brand3', ' 7.45', ' 3.9', ' pear'), ('brand1', ' 5.45', ' 2.7', ' apple'), ('brand2', ' 6.05', ' 3.2', ' apple'), ('brand3', ' 6.43', ' 3.5', ' apple'), ('brand4', ' 7.05', ' 3.9', ' apple'), ('brand1', ' 8.05', ' 4.2', ' plum'), ('brand2', ' 3.05', ' 2.2', ' plum')]
import csv
with open("some.csv") as f:
r = csv.reader(f)
print filter(None,r)
or with list comprehension
import csv
with open("some.csv") as f:
r = csv.reader(f)
print [row for row in r if row]
for comparison
In [3]: N = 100000
In [4]: the_list = [randint(0,3) for _ in range(N)]
In [5]: %timeit filter(None,the_list)
1000 loops, best of 3: 1.91 ms per loop
In [6]: %timeit [i for i in the_list if i]
100 loops, best of 3: 4.01 ms per loop
[edit] since your actual output does not have blanks you donot need the list comprehension or the filter you can just say list(r)
Final answer without blank lines
import csv
with open("some.csv") as f:
print list(csv.reader(f))
if you want dicts you can do
import csv
with open("some.csv") as f:
reader = list(csv.reader(f))
print [dict(zip(reader[0],x)) for x in reader]
#or
print map(lambda x:dict(zip(reader[0],x)), reader)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With