Hoping there's a simple answer here but I can't find it anywhere.
I have a numeric matrix with row names and column names:
# 1 2 3 4
# a 6 7 8 9
# b 8 7 5 7
# c 8 5 4 1
# d 1 6 3 2
I want to melt the matrix to a long format, with the values in one column and matrix row and column names in one column each. The result could be a data.table
or data.frame
like this:
# col row value
# 1 a 6
# 1 b 8
# 1 c 8
# 1 d 1
# 2 a 7
# 2 c 5
# 2 d 6
...
Any tips appreciated.
Use melt
from reshape2:
library(reshape2)
#Fake data
x <- matrix(1:12, ncol = 3)
colnames(x) <- letters[1:3]
rownames(x) <- 1:4
x.m <- melt(x)
x.m
Var1 Var2 value
1 1 a 1
2 2 a 2
3 3 a 3
4 4 a 4
...
The as.table
and as.data.frame
functions together will do this:
> m <- matrix( sample(1:12), nrow=4 )
> dimnames(m) <- list( One=letters[1:4], Two=LETTERS[1:3] )
> as.data.frame( as.table(m) )
One Two Freq
1 a A 7
2 b A 2
3 c A 1
4 d A 5
5 a B 9
6 b B 6
7 c B 8
8 d B 10
9 a C 11
10 b C 12
11 c C 3
12 d C 4
Assuming 'm' is your matrix...
data.frame(col = rep(colnames(m), each = nrow(m)),
row = rep(rownames(m), ncol(m)),
value = as.vector(m))
This executes extremely fast on a large matrix and also shows you a bit about how a matrix is made, how to access things in it, and how to construct your own vectors.
A modification that doesn't require you to know anything about the storage structure, and that easily extends to high dimensional arrays if you use the dimnames
, and slice.index
functions:
data.frame(row=rownames(m)[as.vector(row(m))],
col=colnames(m)[as.vector(col(m))],
value=as.vector(m))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With