Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Combine Multiple Columns Into Tidy Data [duplicate]

Tags:

r

dplyr

tidyr

My dataset looks like this:

unique.id abx.1    start.1     stop.1 abx.2    start.2     stop.2 abx.3    start.3     stop.3 abx.4    start.4
1         1  Moxi 2014-01-01 2014-01-07  PenG 2014-01-01 2014-01-07 Vanco 2014-01-01 2014-01-07  Moxi 2014-01-01
2         2  Moxi 2014-01-01 2014-01-02 Cipro 2014-01-01 2014-01-02  PenG 2014-01-01 2014-01-02 Vanco 2014-01-01
3         3 Cipro 2014-01-01 2014-01-05 Vanco 2014-01-01 2014-01-05 Cipro 2014-01-01 2014-01-05 Vanco 2014-01-01
4         4 Vanco 2014-01-02 2014-01-03 Cipro 2014-01-02 2014-01-03 Cipro 2014-01-02 2014-01-03  PenG 2014-01-02
5         5 Vanco 2014-01-01 2014-01-02  PenG 2014-01-01 2014-01-02  PenG 2014-01-01 2014-01-02 Cipro 2014-01-01
      stop.4    intervention
1 2014-01-07       0
2 2014-01-02       0
3 2014-01-05       1
4 2014-01-03       1
5 2014-01-02       0

With some code to create this:

 abxoptions <- c("Cipro", "Moxi", "PenG", "Vanco")
      df3 <- data.frame(
      unique.id = 1:5,
      abx.1 = sample(abxoptions,5, replace=TRUE),
      start.1 = as.Date(c('2014-01-01', '2014-01-01', '2014-01-01', '2014-01-02', '2014-01-01')),
      stop.1  = as.Date(c('2014-01-07', '2014-01-02', '2014-01-05', '2014-01-03', '2014-01-02')),
      abx.2 = sample(abxoptions,5, replace=TRUE),         
      start.2 = as.Date(c('2014-01-01', '2014-01-01', '2014-01-01', '2014-01-02', '2014-01-01')),
      stop.2  = as.Date(c('2014-01-07', '2014-01-02', '2014-01-05', '2014-01-03', '2014-01-02')),
      abx.3 = sample(abxoptions,5, replace=TRUE),         
      start.3 = as.Date(c('2014-01-01', '2014-01-01', '2014-01-01', '2014-01-02', '2014-01-01')),
      stop.3  = as.Date(c('2014-01-07', '2014-01-02', '2014-01-05', '2014-01-03', '2014-01-02')),
      abx.4 = sample(abxoptions,5, replace=TRUE),         
      start.4 = as.Date(c('2014-01-01', '2014-01-01', '2014-01-01', '2014-01-02', '2014-01-01')),
      stop.4  = as.Date(c('2014-01-07', '2014-01-02', '2014-01-05', '2014-01-03', '2014-01-02')),
      intervention = c(0,0,1,1,0)

)

I would like to tidy this data to look like this:

unique.id    abx     start    stop           intervention
1            Moxi    2014-01-10 2014-01-07      0
1            Pen G   2014-01-01 2014-01-07      0
1            Vanco   2014-01-01 2014-01-07      0
1            Moxi    2014-01-01 2014-01-07      0  etc etc

The following solutions didn't get me where I needed: Gather multiple sets of columns and Combining multiple columns into one

I suspect that Hadley's amazing tidyr pakcage is the way to go...just can't figure this out. Any help would be greatly appreciated.

like image 642
Tom O Avatar asked Feb 25 '15 21:02

Tom O


1 Answers

Almost every data tidying problem can be solved in three steps:

  1. Gather all non-variable columns
  2. Separate "colname" column into multiple variables
  3. Re-spread the data

(often you'll only need one or two of these, but I think they're almost always in this order).

For your data:

  1. The only column that's already a variable is unique.id
  2. You need to split current column names into variable and number
  3. Then you need to put the "variable" variable back into columns

This looks like:

library(tidyr)
library(dplyr)

df3 %>%
  gather(col, value, -unique.id, -intervention) %>%
  separate(col, c("variable", "number")) %>%
  spread(variable, value, convert = TRUE) %>%
  mutate(start = as.Date(start, "1970-01-01"), stop = as.Date(stop, "1970-01-01"))

Your case is a bit more complicated because you have two types of variables, so you need to restore the types at the end.

like image 55
hadley Avatar answered Sep 28 '22 05:09

hadley