Suppose I have definitions as follows (where cata
is the catamorphism):
type Algebra f a = f a -> a
newtype Fix f = Fx (f (Fix f))
unFix :: Fix f -> f (Fix f)
unFix (Fx x) = x
cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix
I was wondering if there would be some way to modify the definition of cata
so that I could chain some object such as an int
through it such that I could generate unique handles for things within the alg function, i.e. "a0", "a1", "a2", ..., etc.
Edit: To make this more clear, I'd like to be able to have some function cata'
such that when I have something similar to the following definitions
data IntF a
= Const Int
| Add a a
instance Functor IntF where
fmap eval (Const i) = Const i
fmap eval (x `Add` y) = eval x `Add` eval y
alg :: Int -> Algebra IntF String
alg n (Const i) = "a" ++ show n
alg n (s1 `Add` s2) = s1 ++ " && " ++ s2
eval = cata' alg
addExpr = Fx $ (Fx $ Const 5) `Add` (Fx $ Const 4)
run = eval addExpr
then run
evaluates to "a0 && a1" or something similar, i.e. the two constants don't get labeled the same thing.
Just sequence them as monads.
newtype Ctr a = Ctr { runCtr :: Int -> (a, Int) } -- is State Int
instance Functor Ctr
instance Applicative Ctr
instance Monad Ctr
type MAlgebra m f a = f (m a) -> m a
fresh :: Ctr Int
fresh = Ctr (\i -> (i, i+1))
data IntF a
= Val
| Add a a
malg :: IntF (Ctr String) -> Ctr String
malg Val = (\x -> "a" ++ show x) <$> fresh
malg (Add x y) = (\a b -> a ++ " && " ++ b) <$> x <*> y
go = cata malg
As I understand, you want something like
cata' :: Functor f => (Int -> f a -> a) -> Fix f -> a
so that you can operate both on f a
and it's index.
If that's true, here's a possible solution.
Int
First we define a new type which will represent Int
-labelled functor:
{-# LANGUAGE DeriveFunctor #-}
data IntLabel f a = IntLabel Int (f a) deriving (Functor)
-- This acts pretty much like `zip`.
labelFix :: Functor f => [Int] -> Fix f -> Fix (IntLabel f)
labelFix (x:xs) (Fx f) = Fx . IntLabel x $ fmap (labelFix xs) f
Now we can define cata'
using cata
and labelFix
:
cata' :: Functor f => (Int -> f a -> a) -> Fix f -> a
cata' alg = cata alg' . labelFix [1..]
where
alg' (IntLabel n f) = alg n f
NOTE: unique Int
s are assigned to each layer, not each functor. E.g. for Fix []
each sublist of the outermost list will be labelled with 2
.
A different approach to the problem would be to use cata
to produce monadic value:
cata :: Functor f => (f (m a) -> m a) -> Fix f -> m a
This is just a specialized version of cata
. With it we can define (almost) cat'
as
cata'' :: Traversable f => (Int -> f a -> a) -> Fix f -> a
cata'' alg = flip evalState [1..] . cata alg'
where
alg' f = alg <$> newLabel <*> sequenceA f
newLabel :: State [a] a
newLabel = state (\(x:xs) -> (x, xs))
Note that Traversable
instance now is needed in order to switch f (m a)
to m (f a)
.
However, you might want to use just a bit more specialized cata
:
cata :: (Functor f, MonadReader Int m) => (f (m a) -> m a) -> Fix f -> m a
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With