Lets say I have 2 struct
s:
typedef struct
{
uint8_t useThis;
uint8_t u8Byte2;
uint8_t u8Byte3;
uint8_t u8Byte4;
} tstr1
and
typedef struct
{
uint8_t u8Byte1;
uint8_t u8Byte2;
uint8_t useThis;
} tstr2
I will only need the useThis
member inside a function, but in some cases I will need to cast one struct or the other:
void someFunction()
{
someStuff();
SOMETHING MyInstance;
if(someVariable)
{
MyInstance = reinterpret_cast<tstr1*>(INFO_FROM_HARDWARE); //This line of course doesn't work
}
else
{
MyInstance = reinterpret_cast<tstr2*>(INFO_FROM_HARDWARE); //This line of course doesn't work
}
MyInstance->useThis; //Calling this memeber with no problem
moreStuff();
}
So I want to use useThis
no matter what cast was done. How can this be done?
I want to avoid someFunction()
to be template (just to avoid this kind of things)
Note tha questions like this have a kind of similar problem but the struct members have the same order
EDIT:
In RealLife these structs are way larger and have several "same named" members. Directly casting a uint8_t
as reinterpret_cast<tstr1*>(INFO_FROM_HARDWARE)->useThis
would be tedious and require several reinterpret_cast
s (althought it's a working solution for my question before this EDIT). This is why I insist on MyInstance
being "complete".
This is what templates are for:
template<class tstr>
std::uint8_t
do_something(std::uint8_t* INFO_FROM_HARDWARE)
{
tstr MyInstance;
std::memcpy(&MyInstance, INFO_FROM_HARDWARE, sizeof MyInstance);
MyInstance.useThis; //Calling this memeber with no problem
// access MyInstance within the template
}
// usage
if(someVariable)
{
do_something<tstr1>(INFO_FROM_HARDWARE);
}
else
{
do_something<tstr2>(INFO_FROM_HARDWARE);
}
I want to avoid someFunction() to be template (just to avoid this kind of things)
Why can’t I separate the definition of my templates class from its declaration and put it inside a .cpp file?
The linked problem isn't an issue for your use case because the potential set of template arguments is a finite set. The very next FAQ entry explains how: Use explicit instantiations of the template.
as suggested by AndyG, how about std::variant
(there's no mention of the c++ standard you are using so maybe a c++17 solution is ok - also worth using <insert other variant implementation> if no c++17 available).
here's an example
std::variant
knows what type is stored in it and you can use visit anytime you wish to use any of the members in there (snippet here for clarity):
// stolen from @eerrorika (sorry for that :( )
struct hardware {
uint8_t a = 'A';
uint8_t b = 'B';
uint8_t c = 'C';
uint8_t d = 'D';
};
struct tstr1 {
uint8_t useThis;
uint8_t u8Byte2;
uint8_t u8Byte3;
uint8_t u8Byte4;
};
struct tstr2 {
uint8_t u8Byte1;
uint8_t u8Byte2;
uint8_t useThis;
};
// stuff
if(true)
{
msg = *reinterpret_cast<tstr1*>(&hw);
}
else
{
msg = *reinterpret_cast<tstr2*>(&hw);
}
std::visit(overloaded {
[](tstr1 const& arg) { std::cout << arg.useThis << ' '; },
[](tstr2 const& arg) { std::cout << arg.useThis << ' '; }
}, msg);
EDIT: you can also do a variant of pointers EDIT2: forgot to escape some stuff...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With