Given two lists, I can produce a list of all permutations the Cartesian Product of these two lists:
permute :: [a] -> [a] -> [[a]]
permute xs ys = [ [x, y] | x <- xs, y <- ys ]
Example> permute [1,2] [3,4] == [ [1,3], [1,4], [2,3], [2,4] ]
How do I extend permute so that instead of taking two lists, it takes a list (length n) of lists and returns a list of lists (length n)
permute :: [[a]] -> [[a]]
Example> permute [ [1,2], [3,4], [5,6] ]
== [ [1,3,5], [1,3,6], [1,4,5], [1,4,6] ] --etc
I couldn't find anything relevant on Hoogle.. the only function matching the signature was transpose
, which doesn't produce the desired output.
Edit: I think the 2-list version of this is essentially the Cartesian Product, but I can't wrap my head around implementing the n-ary Cartesian Product. Any pointers?
Here is my way of implementing it simply, using only list comprehensions.
crossProduct :: [[a]] -> [[a]]
crossProduct (axis:[]) = [ [v] | v <- axis ]
crossProduct (axis:rest) = [ v:r | v <- axis, r <- crossProduct rest ]
I found Eric Lippert's article on computing Cartesian product with LINQ quite helpful in improving my understanding of what was going on. Here's a more-or-less direct translation:
cartesianProduct :: [[a]] -> [[a]]
cartesianProduct sequences = foldr aggregator [[]] sequences
where aggregator sequence accumulator =
[ item:accseq |item <- sequence, accseq <- accumulator ]
Or with more "Haskell-y" terse, meaningless parameter names ;)
cartesianProduct = foldr f [[]]
where f l a = [ x:xs | x <- l, xs <- a ]
This winds up being quite similar to sclv posted after all.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With