I am newbie in signal processing, in this question, i want to ask how to obtain energy for each frequency band around interested frequency F. I have found a formula, but I dont know how to implement it in Python. This is the formula and my Fourier transform plot:
x = np.linspace(0,5,100)
y = np.sin(2*np.pi*x)
## fourier transform
f = np.fft.fft(y)
## sample frequencies
freq = np.fft.fftfreq(len(y), d=x[1]-x[0])
plt.plot(freq, abs(f)**2) ## will show a peak at a frequency of 1 as it should.
You are almost there as Mike pointed but here is a different approach which is simpler to understand.you can set a variable that holds the filtered signal and return a 1d array of Af, then apply the above formula which is quite simple (squared sum of these amplitudes)
Filter out the signals like this
from scipy.signal import butter, lfilter
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
now assuming y
is your original signal and you need energy of 5Hz component in signal ,
#let fs = 250
#let order = 5
oneD_array_of_amps_of_fiveHz_component = butter_bandpass_filter(y, 4, 6, 250, 5)
#calculate energy like this
energy_of_fiveHz_comp = sum([x*2 for x in oneD_array_of_amps_of_fiveHz_component])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With