I would like to calculate cumsum
of some value starting for every run of signals where signal == 1
.
Example data:
set.seed(123)
df <- data.frame(Date = seq.Date(as.Date('2016-09-01'),as.Date('2016-09-30'),by = 'days'),
value = sample(1:10,size=30,replace = TRUE),
signal = c(rep(0,3),rep(1,2),rep(0,1),rep(1,5),rep(0,6),rep(1,3),rep(0,5),rep(1,5)))
> head(df,12)
Date value signal
1 2016-09-01 10 0
2 2016-09-02 10 0
3 2016-09-03 7 0
4 2016-09-04 8 1
5 2016-09-05 1 1
6 2016-09-06 5 0
7 2016-09-07 8 1
8 2016-09-08 3 1
9 2016-09-09 4 1
10 2016-09-10 3 1
11 2016-09-11 2 1
12 2016-09-12 5 0
what I have done so far:
My solution is working, but I think there is a more efficient and elegant way to do it using dplyr
or data.table
.
df$pl <- rep(0,length(df))
# calculating the indices of start/end of runs where signal == 1
runs <- rle(df$signal)
start <- cumsum(runs$lengths) +1
start <- start[seq(1, length(start), 2)]
end <- cumsum(runs$lengths)[-1]
end <- end[seq(1, length(end), 2)]
for(i in 1:length(start))
{
df$pl[start[i]:end[i]] <- cumsum(df$value[start[i]:end[i]])
}
> head(df,12)
Date value signal pl
1 2016-09-01 10 0 0
2 2016-09-02 10 0 0
3 2016-09-03 7 0 0
4 2016-09-04 8 1 8
5 2016-09-05 1 1 9
6 2016-09-06 5 0 0
7 2016-09-07 8 1 8
8 2016-09-08 3 1 11
9 2016-09-09 4 1 15
10 2016-09-10 3 1 18
11 2016-09-11 2 1 20
12 2016-09-12 5 0 0
Using data.table
, you could do this
library(data.table)
set.seed(123)
seq.Date(as.Date('2016-09-01'),as.Date('2016-09-30'),by = 'days')
sample(1:10,size=30,replace = TRUE)
c(rep(0,3),rep(1,2),rep(0,1),rep(1,5),rep(0,6),rep(1,3),rep(0,5),rep(1,5))
df <- data.table(Date = seq.Date(as.Date('2016-09-01'),as.Date('2016-09-30'),by = 'days'),
value = sample(1:10,size=30,replace = TRUE),
signal = c(rep(0,3),rep(1,2),rep(0,1),rep(1,5),rep(0,6),rep(1,3),rep(0,5),rep(1,5)))
df[, pl := cumsum(value)*signal, by = .(signal, rleid(signal))]
#> Date value signal pl
#> 1: 2016-09-01 10 0 0
#> 2: 2016-09-02 10 0 0
#> 3: 2016-09-03 7 0 0
#> 4: 2016-09-04 8 1 8
#> 5: 2016-09-05 1 1 9
#> 6: 2016-09-06 5 0 0
#> 7: 2016-09-07 8 1 8
#> 8: 2016-09-08 3 1 11
#> 9: 2016-09-09 4 1 15
#> 10: 2016-09-10 3 1 18
#> 11: 2016-09-11 2 1 20
#> 12: 2016-09-12 5 0 0
#> 13: 2016-09-13 5 0 0
#> 14: 2016-09-14 4 0 0
#> 15: 2016-09-15 2 0 0
#> 16: 2016-09-16 2 0 0
#> 17: 2016-09-17 3 0 0
#> 18: 2016-09-18 5 1 5
#> 19: 2016-09-19 3 1 8
#> 20: 2016-09-20 9 1 17
#> 21: 2016-09-21 1 0 0
#> 22: 2016-09-22 5 0 0
#> 23: 2016-09-23 8 0 0
#> 24: 2016-09-24 2 0 0
#> 25: 2016-09-25 6 0 0
#> 26: 2016-09-26 3 1 3
#> 27: 2016-09-27 2 1 5
#> 28: 2016-09-28 8 1 13
#> 29: 2016-09-29 9 1 22
#> 30: 2016-09-30 4 1 26
#> Date value signal pl
With dplyr
, I do not know any equivalent of data.table::rleid
, so it uses it:
library(dplyr)
df %>%
group_by(id = data.table::rleidv(signal)) %>%
mutate(pl = cumsum(value) * signal) %>%
select(-id) %>%
head(12)
#> Adding missing grouping variables: `id`
#> Source: local data frame [12 x 5]
#> Groups: id [5]
#>
#> id Date value signal pl
#> <int> <date> <int> <dbl> <dbl>
#> 1 1 2016-09-01 10 0 0
#> 2 1 2016-09-02 10 0 0
#> 3 1 2016-09-03 7 0 0
#> 4 2 2016-09-04 8 1 8
#> 5 2 2016-09-05 1 1 9
#> 6 3 2016-09-06 5 0 0
#> 7 4 2016-09-07 8 1 8
#> 8 4 2016-09-08 3 1 11
#> 9 4 2016-09-09 4 1 15
#> 10 4 2016-09-10 3 1 18
#> 11 4 2016-09-11 2 1 20
#> 12 5 2016-09-12 5 0 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With