Dynamic linking means the use of shared libraries. Shared libraries usually end with . so (short for "shared object"). Shared libraries are the most common way to manage dependencies on Linux systems.
On Linux, you can use ldd to list the load-time dependencies of a dynamically linked executable, e.g. try ldd /bin/ls . Show activity on this post. As others have answered, the standard c library is implicitly linked. If you are using gcc you can use the -Wl,--trace option to see what the linker is doing.
myclass.h
#ifndef __MYCLASS_H__
#define __MYCLASS_H__
class MyClass
{
public:
MyClass();
/* use virtual otherwise linker will try to perform static linkage */
virtual void DoSomething();
private:
int x;
};
#endif
myclass.cc
#include "myclass.h"
#include <iostream>
using namespace std;
extern "C" MyClass* create_object()
{
return new MyClass;
}
extern "C" void destroy_object( MyClass* object )
{
delete object;
}
MyClass::MyClass()
{
x = 20;
}
void MyClass::DoSomething()
{
cout<<x<<endl;
}
class_user.cc
#include <dlfcn.h>
#include <iostream>
#include "myclass.h"
using namespace std;
int main(int argc, char **argv)
{
/* on Linux, use "./myclass.so" */
void* handle = dlopen("myclass.so", RTLD_LAZY);
MyClass* (*create)();
void (*destroy)(MyClass*);
create = (MyClass* (*)())dlsym(handle, "create_object");
destroy = (void (*)(MyClass*))dlsym(handle, "destroy_object");
MyClass* myClass = (MyClass*)create();
myClass->DoSomething();
destroy( myClass );
}
On Mac OS X, compile with:
g++ -dynamiclib -flat_namespace myclass.cc -o myclass.so
g++ class_user.cc -o class_user
On Linux, compile with:
g++ -fPIC -shared myclass.cc -o myclass.so
g++ class_user.cc -ldl -o class_user
If this were for a plugin system, you would use MyClass as a base class and define all the required functions virtual. The plugin author would then derive from MyClass, override the virtuals and implement create_object
and destroy_object
. Your main application would not need to be changed in any way.
The following shows an example of a shared class library shared.[h,cpp] and a main.cpp module using the library. It's a very simple example and the makefile could be made much better. But it works and may help you:
shared.h defines the class:
class myclass {
int myx;
public:
myclass() { myx=0; }
void setx(int newx);
int getx();
};
shared.cpp defines the getx/setx functions:
#include "shared.h"
void myclass::setx(int newx) { myx = newx; }
int myclass::getx() { return myx; }
main.cpp uses the class,
#include <iostream>
#include "shared.h"
using namespace std;
int main(int argc, char *argv[])
{
myclass m;
cout << m.getx() << endl;
m.setx(10);
cout << m.getx() << endl;
}
and the makefile that generates libshared.so and links main with the shared library:
main: libshared.so main.o
$(CXX) -o main main.o -L. -lshared
libshared.so: shared.cpp
$(CXX) -fPIC -c shared.cpp -o shared.o
$(CXX) -shared -Wl,-soname,libshared.so -o libshared.so shared.o
clean:
$rm *.o *.so
To actual run 'main' and link with libshared.so you will probably need to specify the load path (or put it in /usr/local/lib or similar).
The following specifies the current directory as the search path for libraries and runs main (bash syntax):
export LD_LIBRARY_PATH=.
./main
To see that the program is linked with libshared.so you can try ldd:
LD_LIBRARY_PATH=. ldd main
Prints on my machine:
~/prj/test/shared$ LD_LIBRARY_PATH=. ldd main
linux-gate.so.1 => (0xb7f88000)
libshared.so => ./libshared.so (0xb7f85000)
libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0xb7e74000)
libm.so.6 => /lib/libm.so.6 (0xb7e4e000)
libgcc_s.so.1 => /usr/lib/libgcc_s.so.1 (0xb7e41000)
libc.so.6 => /lib/libc.so.6 (0xb7cfa000)
/lib/ld-linux.so.2 (0xb7f89000)
Basically, you should include the class' header file in the code where you want to use the class in the shared library. Then, when you link, use the '-l' flag to link your code with the shared library. Of course, this requires the .so to be where the OS can find it. See 3.5. Installing and Using a Shared Library
Using dlsym is for when you don't know at compile time which library you want to use. That doesn't sound like it's the case here. Maybe the confusion is that Windows calls the dynamically loaded libraries whether you do the linking at compile or run-time (with analogous methods)? If so, then you can think of dlsym as the equivalent of LoadLibrary.
If you really do need to dynamically load the libraries (i.e., they're plug-ins), then this FAQ should help.
On top of previous answers, I'd like to raise awareness about the fact that you should use the RAII (Resource Acquisition Is Initialisation) idiom to be safe about handler destruction.
Here is a complete working example:
Interface declaration: Interface.hpp
:
class Base {
public:
virtual ~Base() {}
virtual void foo() const = 0;
};
using Base_creator_t = Base *(*)();
Shared library content:
#include "Interface.hpp"
class Derived: public Base {
public:
void foo() const override {}
};
extern "C" {
Base * create() {
return new Derived;
}
}
Dynamic shared library handler: Derived_factory.hpp
:
#include "Interface.hpp"
#include <dlfcn.h>
class Derived_factory {
public:
Derived_factory() {
handler = dlopen("libderived.so", RTLD_NOW);
if (! handler) {
throw std::runtime_error(dlerror());
}
Reset_dlerror();
creator = reinterpret_cast<Base_creator_t>(dlsym(handler, "create"));
Check_dlerror();
}
std::unique_ptr<Base> create() const {
return std::unique_ptr<Base>(creator());
}
~Derived_factory() {
if (handler) {
dlclose(handler);
}
}
private:
void * handler = nullptr;
Base_creator_t creator = nullptr;
static void Reset_dlerror() {
dlerror();
}
static void Check_dlerror() {
const char * dlsym_error = dlerror();
if (dlsym_error) {
throw std::runtime_error(dlsym_error);
}
}
};
Client code:
#include "Derived_factory.hpp"
{
Derived_factory factory;
std::unique_ptr<Base> base = factory.create();
base->foo();
}
Note:
.hpp
and .cpp
files.new
/delete
overload.Two clear articles to get more details:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With