Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why does C++ need a separate header file?

I've never really understood why C++ needs a separate header file with the same functions as in the .cpp file. It makes creating classes and refactoring them very difficult, and it adds unnecessary files to the project. And then there is the problem with having to include header files, but having to explicitly check if it has already been included.

C++ was ratified in 1998, so why is it designed this way? What advantages does having a separate header file have?


Follow up question:

How does the compiler find the .cpp file with the code in it, when all I include is the .h file? Does it assume that the .cpp file has the same name as the .h file, or does it actually look through all the files in the directory tree?

like image 427
Marius Avatar asked Aug 20 '09 12:08

Marius


People also ask

Why does C require header files?

Header files are needed to declare functions and variables that are available. You might not have access to the definitions (=the . c files) at all; C supports binary-only distribution of code in libraries.

Why are header files separate?

The main reason for header files is to enable separate compilation of files, and minimize dependencies.

Do all C files need a header file?

No, it is not necessary. The reason of the header files is to separate the interface from the implementation.

Why do we need a header file name one standard header file in C?

Explanation: A header file is generally used to define all of the functions, variables and constants contained in any function library that you might want to use. The header file stdio. h should be used if you want to use the two standard I/O functions printf and scanf.


2 Answers

You seem to be asking about separating definitions from declarations, although there are other uses for header files.

The answer is that C++ doesn't "need" this. If you mark everything inline (which is automatic anyway for member functions defined in a class definition), then there is no need for the separation. You can just define everything in the header files.

The reasons you might want to separate are:

  1. To improve build times.
  2. To link against code without having the source for the definitions.
  3. To avoid marking everything "inline".

If your more general question is, "why isn't C++ identical to Java?", then I have to ask, "why are you writing C++ instead of Java?" ;-p

More seriously, though, the reason is that the C++ compiler can't just reach into another translation unit and figure out how to use its symbols, in the way that javac can and does. The header file is needed to declare to the compiler what it can expect to be available at link time.

So #include is a straight textual substitution. If you define everything in header files, the preprocessor ends up creating an enormous copy and paste of every source file in your project, and feeding that into the compiler. The fact that the C++ standard was ratified in 1998 has nothing to do with this, it's the fact that the compilation environment for C++ is based so closely on that of C.

Converting my comments to answer your follow-up question:

How does the compiler find the .cpp file with the code in it

It doesn't, at least not at the time it compiles the code that used the header file. The functions you're linking against don't even need to have been written yet, never mind the compiler knowing what .cpp file they'll be in. Everything the calling code needs to know at compile time is expressed in the function declaration. At link time you will provide a list of .o files, or static or dynamic libraries, and the header in effect is a promise that the definitions of the functions will be in there somewhere.

like image 152
Steve Jessop Avatar answered Oct 22 '22 06:10

Steve Jessop


Some people consider header files an advantage:

  • It is claimed that it enables/enforces/allows separation of interface and implementation -- but usually, this is not the case. Header files are full of implementation details (for example member variables of a class have to be specified in the header, even though they're not part of the public interface), and functions can, and often are, defined inline in the class declaration in the header, again destroying this separation.
  • It is sometimes said to improve compile-time because each translation unit can be processed independently. And yet C++ is probably the slowest language in existence when it comes to compile-times. A part of the reason is the many many repeated inclusions of the same header. A large number of headers are included by multiple translation units, requiring them to be parsed multiple times.

Ultimately, the header system is an artifact from the 70's when C was designed. Back then, computers had very little memory, and keeping the entire module in memory just wasn't an option. A compiler had to start reading the file at the top, and then proceed linearly through the source code. The header mechanism enables this. The compiler doesn't have to consider other translation units, it just has to read the code from top to bottom.

And C++ retained this system for backwards compatibility.

Today, it makes no sense. It is inefficient, error-prone and overcomplicated. There are far better ways to separate interface and implementation, if that was the goal.

However, one of the proposals for C++0x was to add a proper module system, allowing code to be compiled similar to .NET or Java, into larger modules, all in one go and without headers. This proposal didn't make the cut in C++0x, but I believe it's still in the "we'd love to do this later" category. Perhaps in a TR2 or similar.

like image 37
jalf Avatar answered Oct 22 '22 06:10

jalf