I have a performance question today.
I am making a (Haskell) program and, when profiling, I saw that most of the time is spent in the function you can find below. Its purpose is to take the nth element of a list and return the list without it besides the element itself. My current (slow) definition is as follows:
breakOn :: Int -> [a] -> (a,[a])
breakOn 1 (x:xs) = (x,xs)
breakOn n (x:xs) = (y,x:ys)
where
(y,ys) = breakOn (n-1) xs
The Int
argument is known to be in the range 1..n
where n
is the length of the (never null) list (x:xs)
, so the function never arises an error.
However, I got a poor performance here. My first guess is that I should change lists for another structure. But, before start picking different structures and testing code (which will take me lot of time) I wanted to ask here for a third person opinion. Also, I'm pretty sure that I'm not doing it in the best way. Any pointers are welcome!
Please, note that the type a
may not be an instance of Eq
.
I adapted my code tu use Sequence
s from the Data.Sequence module. The result is here:
import qualified Data.Sequence as S
breakOn :: Int -> Seq a -> (a,Seq a)
breakOn n xs = (S.index zs 0, ys <> (S.drop 1 zs))
where
(ys,zs) = S.splitAt (n-1) xs
However, I still accept further suggestions of improvement!
To split the elements of a list in Python: Use a list comprehension to iterate over the list. On each iteration, call the split() method to split each string. Return the part of each string you want to keep.
Yes, this is inefficient. You can do a bit better by using splitAt
(which unboxes the number during the recursive bit), a lot better by using a data structure with efficient splitting, e.g. a fingertree, and best by massaging the context to avoid needing this operation. If you post a bit more context, it may be possible to give more targeted advice.
Prelude functions are generally pretty efficient. You could rewrite your function using splitAt
, as so:
breakOn :: Int -> [a] -> (a,[a])
breakOn n xs = (z,ys++zs)
where
(ys,z:zs) = splitAt (n-1) xs
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With