I have two related questions:
the bitwise operator >>> means that we are shifting the binary number by those many places while filling 0 in the Most Significant Bit. But, then why does the following operation yields the same number: 5>>>32 yields 5 and -5>>>32 yields -5. Because if the above description is correct then both these operations would have yielded 0 as the final result.
In continuation to above, As per Effective Java book, we should use (int) (f ^ (f >>> 32)) (in case the field is long) while calculating the hash code (if the field is long). Why do we do that and what's the explanation
5
can be represented as 0101
if you shift it by 1 bit i.e 5>>>1
this will result as 0010=2
If the promoted type of the left-hand operand is int, only the five lowest-order bits of the right-hand operand are used as the shift distance. It is as if the right-hand operand were subjected to a bitwise logical AND operator & (§15.22.1) with the mask value 0x1f. The shift distance actually used is therefore always in the range 0 to 31, inclusive.
When you shift an integer with the << or >> operator and the shift distance is greater than or equal to 32, you take the shift distance mod 32 (in other words, you mask off all but the low order 5 bits of the shift distance). This can be very counterintuitive. For example (i> >> 32) == i, for every integer i. You might expect it to shift the entire number off to the right, returning 0 for positive inputs and -1 for negative inputs, but it doesn't; it simply returns i, because (i << (32 & 0x1f)) == (i << 0) == i.
Answer to your first question is here why is 1>>32 == 1?
The second question answer, in short, is that in such way the whole long value is used(not a part of it) and note that it is probably the fastest way to do this.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With