I've got to analyze this loop, among others, and determine its running time using Big-O notation.
for ( int i = 0; i < n; i += 4 )
for ( int j = 0; j < n; j++ )
for ( int k = 1; k < j*j; k *= 2 )`
Here's what I have so far:
for ( int i = 0; i < n; i += 4 ) = n
for ( int j = 0; j < n; j++ ) = n
for ( int k = 1; k < j*j; k *= 2 ) = log^2 n
Now the problem I'm coming to is the final running time of the loop. My best guess is O(n^2), however I am uncertain if this correct. Can anyone help?
Edit: sorry about the Oh -> O thing. My textbook uses "Big-Oh"
Since we assume the statements are O(1), the total time for the for loop is N * O(1), which is O(N) overall. The outer loop executes N times. Every time the outer loop executes, the inner loop executes M times.
A loop or recursion that runs a constant number of times is also considered as O(1). For example, the following loop is O(1).
Two nested loops: O(n²) At each step of the iteration, the nested loop is doing an O(1) operation. So overall time complexity = O(n²) * O(1) = O(n²).
First note that the outer loop is independent from the remaining two - it simply adds a (n/4)*
multiplier. We will consider that later.
Now let's consider the complexity of
for ( int j = 0; j < n; j++ )
for ( int k = 1; k < j*j; k *= 2 )
We have the following sum:
0 + log2(1) + log2(2 * 2) + ... + log2(n*n)
It is good to note that log2(n^2) = 2 * log2(n). Thus we re-factor the sum to:
2 * (0 + log2(1) + log2(2) + ... + log2(n))
It is not very easy to analyze this sum but take a look at this post. Using Sterling's approximation one can that it is belongs to O(n*log(n))
. Thus the overall complexity is O((n/4)*2*n*log(n))= O(n^2*log(n))
j
, the inner loop is O(log_2(j^2))
time, but sine
log_2(j^2)=2log(j)
, it is actually O(log(j))
.For each iteration of middle loop, it takes O(log(j)) time (to do the inner loop), so we need to sum:
sum { log(j) | j=1,..., n-1 } log(1) + log(2) + ... + log(n-1) = log((n-1)!)
And since log((n-1)!)
is in O((n-1)log(n-1)) = O(nlogn)
, we can conclude middle middle loop takes O(nlogn)
operations .
Note that both middle and inner loop are independent of i
, so to
get the total complexity, we can just multiply n/4
(number of
repeats of outer loop) with complexity of middle loop, and get:
O(n/4 * nlogn) = O(n^2logn)
So, total complexity of this code is O(n^2 * log(n))
Time Complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount (which is c in examples below):
for (int i = 1; i <= n; i += c) {
// some O(1) expressions
}
for (int i = n; i > 0; i -= c) {
// some O(1) expressions
}
Time complexity of nested loops is equal to the number of times the innermost statement is executed. For example the following sample loops have O(n²) time complexity:
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
for (int i = n; i > 0; i += c) {
for (int j = i+1; j <=n; j += c) {
// some O(1) expressions
}
Time Complexity of a loop is considered as O(logn) if the loop variables is divided / multiplied by a constant amount:
for (int i = 1; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > 0; i /= c) {
// some O(1) expressions
}
Now we have:
for ( int i = 0; i < n; i += 4 ) <----- runs n times
for ( int j = 0; j < n; j++ ) <----- for every i again runs n times
for ( int k = 1; k < j*j; k *= 2 )` <--- now for every j it runs logarithmic times.
So complexity is O(n²logm) where m is n² which can be simplified to O(n²logn) because n²logm = n²logn² = n² * 2logn ~ n²logn
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With