I have to process a whole dataframe with some hundered thousands rows, but I can simplify it as below:
df = pd.DataFrame([
('a', 1, 1),
('a', 0, 0),
('a', 0, 1),
('b', 0, 0),
('b', 1, 0),
('b', 0, 1),
('c', 1, 1),
('c', 1, 0),
('c', 1, 0)
], columns=['A', 'B', 'C'])
print (df)
A B C
0 a 1 1
1 a 0 0
2 a 0 1
3 b 0 0
4 b 1 0
5 b 0 1
6 c 1 1
7 c 1 0
8 c 1 0
My goal it to flatten the columns "B" and "C" based on the label they have in the "A" column
A B_1 B_2 B_3 C_1 C_2 C_3
0 a 1 0 0 1 0 1
3 b 0 1 0 0 0 1
6 c 1 1 1 1 0 0
The code I wrote gives the result I want, but it is pretty slow as it uses a simple for loop on the unique labels. The solution I see is to write some vectorized function that optimize my code. Anyone has some idea? Below I append the code.
added_col = ['B_1', 'B_2', 'B_3', 'C_1', 'C_2', 'C_3']
new_df = df.drop(['B', 'C'], axis=1).copy()
new_df = new_df.iloc[[x for x in range(0, len(df), 3)], :]
new_df = pd.concat([new_df,pd.DataFrame(columns=added_col)], sort=False)
for e, elem in new_df['A'].iteritems():
new_df.loc[e, added_col] = df[df['A'] == elem].loc[:,['B','C']].T.values.flatten()
Flatten columns: use get_level_values() Flatten columns: use to_flat_index() Flatten columns: join column labels. Flatten rows: flatten all levels.
The first method to flatten the pandas dataframe is through NumPy python package. There is a function in NumPy that is numpy. flatten() that perform this task. First, you have to convert the dataframe to numpy using the to_numpy() method and then apply the flatten() method.
You can replace values of all or selected columns based on the condition of pandas DataFrame by using DataFrame. loc[ ] property. The loc[] is used to access a group of rows and columns by label(s) or a boolean array. It can access and can also manipulate the values of pandas DataFrame.
Sorting Your DataFrame on a Single Column. To sort the DataFrame based on the values in a single column, you'll use . sort_values() . By default, this will return a new DataFrame sorted in ascending order.
Here is one way:
# create a row number by group
df['rn'] = df.groupby('A').cumcount() + 1
# pivot the table
new_df = df.set_index(['A', 'rn']).unstack()
# rename columns
new_df.columns = [x + '_' + str(y) for (x, y) in new_df.columns]
new_df.reset_index()
# A B_1 B_2 B_3 C_1 C_2 C_3
#0 a 1 0 0 1 0 1
#1 b 0 1 0 0 0 1
#2 c 1 1 1 1 0 0
In an effort to improve performance, I've used numba and numpy assignment
from numba import njit
@njit
def f(i, vals, n, m, k):
out = np.empty((n, k, m), vals.dtype)
out.fill(0)
c = np.zeros(n, np.int64)
for j in range(len(i)):
x = i[j]
out[x, :, c[x]] = vals[j]
c[x] += 1
return out.reshape(n, m * k)
d0 = df.drop('A', 1)
cols = [*d0]
i, r = pd.factorize(df.A)
n = len(r)
m = np.bincount(i).max()
k = len(cols)
vals = d0.values
pd.DataFrame(
f(i, vals, n, m, k),
pd.Index(r, name='A'),
[f"{c}_{i}" for c in cols for i in range(1, m + 1)]
).reset_index()
A B_1 B_2 B_3 C_1 C_2 C_3
0 a 1 0 0 1 0 1
1 b 0 1 0 0 0 1
2 c 1 1 1 1 0 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With